Abstract

Energy consumption in commercial buildings is significantly affected by the performance of heating, ventilation, and air-conditioning (HVAC) systems, which are traditionally operated using centralized controllers. HVAC control requires adjusting multiple setpoints such as chilled water temperatures and supply air temperature (SAT). Supervisory control framework in a distributed setting enables optimal HVAC operation and provides scalable solutions for optimizing energy across several scales from homes to regional areas. This paper proposes a distributed optimization framework for achieving energy efficiency in large-scale building energy systems. It is highly desirable to have building management systems that are scalable, robust, flexible, and are low cost. For addressing the scalability and flexibility, a modular problem formulation is established that decouples the distributed optimization level from local thermal zone modeling level. We leverage a recently developed generalized gossip algorithm for robust distributed optimization. The supervisory controller aims at minimizing the energy input considering occupant comfort. For validating the proposed scheme, a numerical case study based on a physical testbed in the Iowa Energy Center is presented. We show that the distributed optimization methodology outperforms the typical baseline strategy, which is a rule-based controller to set a constant supply air temperature. This paper also incorporates a software architecture based on the volttron platform, developed by the Pacific Northwest National Laboratory (PNNL), for practical implementation of the proposed framework via the BACnet system. The experimental results show that the supervisory control framework proposed in this paper can save energy by approximately 11%.

References

1.
Agency
,
E. P.
,
2008
,
Report on Environment, Final Report Epa/600/r-07/045f
,
Environmental Protection Agency
, Washington, DC.
2.
Afram
,
A.
, and
Janabi-Sharifi
,
F.
,
2014
, “
Theory and Applications of HVAC Control Systems–A Review of Model Predictive Control (MPC)
,”
Build. Environ.
,
72
, pp.
343
355
.10.1016/j.buildenv.2013.11.016
3.
Scherer
,
H. F.
,
Pasamontes
,
M.
,
Guzmán
,
J. L.
,
Álvarez
,
J. D.
,
Camponogara
,
E.
, and
Normey-Rico
,
J. E.
,
2014
, “
Efficient Building Energy Management Using Distributed Model Predictive Control
,”
J. Process Control
,
24
(
6
), pp.
740
749
.10.1016/j.jprocont.2013.09.024
4.
Razmara
,
M.
,
Maasoumy
,
M.
,
Shahbakhti
,
M.
, and
Robinett
,
R.
, III
,
2015
, “
Optimal Exergy Control of Building HVAC System
,”
Appl. Energy
,
156
, pp.
555
565
.10.1016/j.apenergy.2015.07.051
5.
Liang
,
W.
,
Quinte
,
R.
,
Jia
,
X.
, and
Sun
,
J.-Q.
,
2015
, “
MPC Control for Improving Energy Efficiency of a Building Air Handler for Multi-Zone VAVS
,”
Build. Environ.
,
92
, pp.
256
268
.10.1016/j.buildenv.2015.04.033
6.
Blum
,
D.
,
Arendt
,
K.
,
Rivalin
,
L.
,
Piette
,
M.
,
Wetter
,
M.
, and
Veje
,
C.
,
2019
, “
Practical Factors of Envelope Model Setup and Their Effects on the Performance of Model Predictive Control for Building Heating, Ventilating, and Air Conditioning Systems
,”
Appl. Energy
,
236
, pp.
410
425
.10.1016/j.apenergy.2018.11.093
7.
Jorissen
,
F.
,
Boydens
,
W.
, and
Helsen
,
L.
,
2019
, “
Taco, an Automated Toolchain for Model Predictive Control of Building Systems: Implementation and Verification
,”
J. Build. Perform. Simul.
,
12
(
2
), pp.
180
192
.10.1080/19401493.2018.1498537
8.
Yang
,
C.
,
Li
,
H.
,
Rezgui
,
Y.
,
Petri
,
I.
,
Yuce
,
B.
,
Chen
,
B.
, and
Jayan
,
B.
,
2014
, “
High Throughput Commuting Based Distributed Genetic Algorithm for Building Energy Consumption Optimization
,”
Energy Build.
,
76
, pp.
92
101
.10.1016/j.enbuild.2014.02.053
9.
Magnier
,
L.
, and
Haghighat
,
F.
,
2010
, “
Multiobjective Optimization of Building Design Using TRNSYS Simulations, Genetic Algorithm, and Artificial Neural Network
,”
Build. Environ.
,
45
(
3
), pp.
739
746
.10.1016/j.buildenv.2009.08.016
10.
Menassa
,
C. C.
,
Kamat
,
V. R.
,
Lee
,
S.
,
Azar
,
E.
,
Feng
,
C.
, and
Anderson
,
K.
,
2014
, “
Conceptual Framework to Optimize Building Energy Consumption by Coupling Distributed Energy Simulation and Occupancy Models
,”
J. Comput. Civ. Eng.
,
28
(
1
), pp.
50
62
.10.1061/(ASCE)CP.1943-5487.0000299
11.
Azar
,
E.
, and
Menassa
,
C. C.
, January,
2014
, “
Framework to Evaluate Energy-Saving Potential From Occupancy Interventions in Typical Commercial Buildings in the United States
,”
J. Comput. Civ. Eng.
,
28
(
1
), pp.
63
78
.10.1061/(ASCE)CP.1943-5487.0000318
12.
Wang
,
Z.
,
Yang
,
R.
, and
Wang
,
L.
,
2010
, “
Multi-Agent Control System With Intelligent Optimization for Smart and Energy-Efficient Buildings
,”
Proceedings of 36th Annual Conference on IEEE Industrial Electronics Society
, Glendale, AZ, Nov. 7–10, pp.
1144
1149
.10.1109/IECON.2010.5675530
13.
Ferrara
,
M.
,
Fabrizio
,
E.
,
Virgone
,
J.
, and
Filippi
,
M.
,
2014
, “
A Simulation-Based Optimization Method for Cost-Optimal Analysis of Nearly Zero Energy Buildings
,”
Energy Build.
,
84
, pp.
442
457
.10.1016/j.enbuild.2014.08.031
14.
Romani
,
Z.
,
Draoui
,
A.
, and
Allard
,
F.
,
2015
, “
Metamodeling the Heating and Cooling Energy Needs and Simultaneous Building Envelope Optimization for Low Energy Building Design in Morocco
,”
Energy Build.
,
102
, pp.
139
148
.10.1016/j.enbuild.2015.04.014
15.
Liu
,
P.
, and
Fu
,
Y.
,
2013
, “
Optimal Operation of Energy Efficiency Building: A Robust Optimization Approach
,”
Proceedings of Power and Energy Society General Meeting
, Vancouver, BC, July 21–25, pp.
1
5
.10.1109/PESMG.2013.6673050
16.
Hasan
,
O. A.
,
Defer
,
D.
, and
Shahrour
,
I.
,
2014
, “
A Simplified Building Thermal Model for the Optimization of Energy Consumption: Use of a Random Number Generator
,”
Energy Build.
,
82
, pp.
322
329
.10.1016/j.enbuild.2014.07.023
17.
Ramallo-González
,
A. P.
, and
Coley
,
D. A.
,
2014
, “
Using Self-Adaptive Optimization Methods to Perform Sequential Optimization for Low-Energy Building Design
,”
Energy Build.
,
81
, pp.
18
29
.10.1016/j.enbuild.2014.05.037
18.
Gruber
,
J. K.
, and
Prodanovic
,
M.
,
2014
, “
Two-Stage Optimization for Building Energy Management
,”
Energy Procedia
,
62
, pp.
346
354
.10.1016/j.egypro.2014.12.396
19.
Gupta
,
S. K.
,
Kar
,
K.
,
Mishra
,
S.
, and
Wen
,
J. T.
,
2015
, “
Collaborative Energy and Thermal Comfort Management Through Distributed Consensus Algorithms
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
4
), pp.
1285
1296
.10.1109/TASE.2015.2468730
20.
Sun
,
B.
,
Luh
,
P. B.
,
Jia
,
Q.-S.
, and
Yan
,
B.
,
2015
, “
Event-Based Optimization Within the Lagrangian Relaxation Framework for Energy Savings in HVAC Systems
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
4
), pp.
1396
1406
.10.1109/TASE.2015.2455419
21.
Yan
,
B.
,
Luh
,
P. B.
,
Bragin
,
M. A.
,
Song
,
C.
,
Dong
,
C.
, and
Gan
,
Z.
,
2014
, “
Energy-Efficient Building Clusters
,”
IEEE International Conference on Automation Science and Engineering
(
CASE
), Taipei, Taiwan, Aug. 18–22, pp.
966
971
.10.1109/CoASE.2014.6899443
22.
Yang
,
R.
, and
Wang
,
L.
,
2011
, “
Energy Management of Multi-Zone Buildings Based on Multi-Agent Control and Particle Swarm Optimization
,”
IEEE International Conference on Proceedings of Systems, Man,
and Cybernetics (
SMC
), Anchorage, AK, Oct. 9–12, pp.
159
164
.10.1109/ICSMC.2011.6083659
23.
Chen
,
J.
,
Taylor
,
J. E.
, and
Wei
,
H.-H.
,
2012
, “
Modeling Building Occupant Network Energy Consumption Decision-Making: The Interplay Between Network Structure and Conservation
,”
Energy Build.
,
47
, pp.
515
524
.10.1016/j.enbuild.2011.12.026
24.
Cai
,
J.
,
Kim
,
D.
,
Putta
,
V. K.
,
Braun
,
J. E.
, and
Hu
,
J.
,
2015
, “
Multi-Agent Control for Centralized Air Conditioning Systems Serving Multi-Zone Buildings
,”
Proceedings of American Control Conference
, Chicago, IL, July 1–3.10.1109/ACC.2015.7170862
25.
Jiang
,
Z.
,
Chinde
,
V.
,
Kohl
,
A.
,
Sarkar
,
S.
, and
Kelkar
,
A.
,
2016
, “
Scalable Supervisory Control of Building Energy Systems Using Generalized Gossip
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
581
586
.10.1109/ACC.2016.7524976
26.
Lutes
,
R. G.
,
Haack
,
J.
,
Katipamula
,
S.
,
Monson
,
K.
,
Akyol
,
B.
,
Carpenter
,
B.
, and
Tenney
,
N.
,
2014
, “Volttron: User Guide,” Pacific Northwest National Lab, Richland, WA.
27.
Chinde
,
V.
,
Heylmun
,
J. C.
,
Kohl
,
A.
,
Jiang
,
Z.
,
Sarkar
,
S.
, and
Kelkar
,
A.
,
2015
, “
Comparative Evaluation of Control Oriented Zone Temperature Prediction Modeling Strategies in Buildings
,”
ASME
Paper No. DSCC2015-9864.10.1115/DSCC2015-9864
28.
Zhang
,
X.
,
Shi
,
W.
,
Li
,
X.
,
Yan
,
B.
,
Malkawi
,
A.
, and
Li
,
N.
,
2016
, “
Decentralized Temperature Control Via HVAC Systems in Energy Efficient Buildings: An Approximate Solution Procedure
,”
IEEE Global Conference on Signal and Information Processing
(
GlobalSIP
), Washington, DC, Dec. 7–9, pp.
936
940
.10.1109/GlobalSIP.2016.7905980
29.
Jiang
,
Z.
,
Sarkar
,
S.
, and
Kushal
,
M.
,
2015
, “
On Distributed Optimization Using Generalized Gossip
,”
Proceedings of 54th Conference on Decision and Control
, Osaka, Japan, Dec. 15–18, pp.
2667
2672
.10.1109/CDC.2015.7402618
30.
Boyd
,
S.
,
Xiao
,
L.
, and
Mutapcic
,
A.
,
2003
, “
Subgradient Methods
,” Notes of EE392o, Stanford University, Stanford, CA, Autumn Quarter.
31.
Johansson
,
B.
,
Keviczky
,
T.
,
Johansson
,
M.
, and
Johansson
,
K. H.
,
2008
, “
Subgradient Methods and Consensus Algorithms for Solving Convex Optimization Problems
,”
Proceedings of the 47th IEEE Conference on Decision and Control
, Caucun, Mexico, Dec. 9–11, pp.
4185
4190
.10.1109/CDC.2008.4739339
32.
Nedic
,
A.
, and
Ozdaglar
,
A.
,
2009
, “
Distributed Subgradient Methods for Multi-Agent Optimization
,”
Autom. Control, IEEE Trans.
,
54
(
1
), pp.
48
61
.10.1109/TAC.2008.2009515
33.
Sarkar
,
S.
,
Mukherjee
,
K.
, and
Ray
,
A.
,
2013
, “
Distributed Decision Propagation in Proximity Networks
,”
Int. J. Control
,
86
(
6
), pp.
1118
1130
.10.1080/00207179.2013.782511
34.
Ram
,
S. S.
,
Nedic
,
A.
, and
Veeravalli
,
V. V.
,
2009
, “
Distributed Subgradient Projection Algorithm for Convex Optimization
,”
IEEE International Conference on Acoustics, Speech and Signal Processing
(
ICASSP
), Taipei, Taiwan, pp.
3653
3656
.http://www.ifp.illinois.edu/~angelia/dssm_icassp09_revised_submit.pdf
35.
Bengea
,
S. C.
,
Li
,
P.
,
Sarkar
,
S.
,
Vichik
,
S.
,
Adetola
,
V.
,
Kang
,
K.
,
Lovett
,
T.
,
Leonardi
,
F.
, and
Kelman
,
A. D.
,
2015
, “
Fault-Tolerant Optimal Control of a Building HVAC System
,”
Sci. Technol. Built Environ.
,
21
(
6
), pp.
734
751
.10.1080/23744731.2015.1057085
36.
Chinde
,
V.
,
Kosaraju
,
K.
,
Kelkar
,
A.
,
Pasumarthy
,
R.
,
Sarkar
,
S.
, and
Singh
,
N.
,
2017
, “
A Passivity-Based Power-Shaping Control of Building HVAC Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
11
), p.
111007
.10.1115/1.4036885
37.
Wang
,
G.
, and
Song
,
L.
,
2012
, “
Air Handling Unit Supply Air Temperature Optimal Control During Economizer Cycles
,”
Energy Build.
,
49
, pp.
310
316
.10.1016/j.enbuild.2012.02.024
38.
Center
,
I. E.
,
2010
, “
Energy Resource Station (Ers) Technical Description
,” Iowa Energy Center, Des Moines, IA, Report.
39.
Chinde
,
V.
,
Kohl
,
A.
,
Jiang
,
Z.
,
Kelkar
,
A.
, and
Sarkar
,
S.
,
2016
, “
A Volttron Based Implementation of Supervisory Control Using Generalized Gossip for Building Energy Systems
,”
Proceedings in the Fourth International High Performance Buildings Conference
, West Lafayette, IN, July 11–14, Paper No.
171
.https://pdfs.semanticscholar.org/e9af/9c52ee2a10a1a4b9c88a433a3a7660821caa.pdf
You do not currently have access to this content.