Abstract

Pneumatic artificial muscles (PAMs) are a compelling actuator for physical human–robot interaction (pHRI) due to their low mass, high-force capacity, and muscle-like characteristics. However, their low efficiency and bandwidth have forced mobile robotics researchers to examine alternative actuators for performing dynamic tasks like walking and grasping. Recently, the sleeve PAM, has been proposed and shown to improve the efficiency and force capacity when compared with traditional PAM designs. However, the increase in the dynamic performance of sleeve PAMs has not yet been studied. The aim of this research is to compare the dynamic performance of sleeve and traditional PAMS, and to develop a phenomenological model of their dynamic performance. Testing found that the isometric bandwidth of sleeve muscles can be 100% greater than that of traditional muscles at rest length if pressure response is considered, although this improvement decreases with contraction. If force is instead considered, the increase in bandwidth is even greater (up to 120% greater than that of a traditional PAM). The volume of both PAMs was determined using an experimental method, and a phenomenological model was fitted. When these models were used to simulate the performance of a PAM-actuated system, it was shown that both approximate the behavior of the measured system with good accuracy. Finally, a proposed implementation is given which illustrates how the benefits of the sleeved PAM actuator design could be realized in a practical robotics application.

References

1.
Vanderborght
,
B.
,
Verrelst
,
B.
,
Van Ham
,
R.
,
Naudet
,
J.
,
Vermeulen
,
J.
,
Lefeber
,
D.
, and
Daerden
,
F.
,
2004
, “
LUCY, a Bipedal Walking Robot With Pneumatic Artificial Muscles
,”
IEEE Conference on Mechatronics and Robotics
, Aachen, Germany, pp.
106
114
.https://www.researchgate.net/publication/228971952_LUCY_a_bipedal_walking_robot_with_pneumatic_artificial_muscles
2.
Eichhorn
,
M.
,
Ament
,
C.
, and
Nguyen
,
T. T.
,
2009
, “
Modelling of the 4-Axis Kinematic Manipulator AirArm Driven by Pneumatic Muscle Actuators
,”
International Conference on Control and Automation
, Vol.
100565
, Christchurch, New Zealand, Dec. 9–11, pp.
1301
1307
.10.1109/ICCA.2009.5410288
3.
Costa
,
N.
,
Bezdicek
,
M.
,
Brown
,
M.
,
Gray
,
J.
,
Caldwell
,
D.
, and
Hutchins
,
S.
,
2006
, “
Joint Motion Control of a Powered Lower Limb Orthosis for Rehabilitation
,”
IEEE Int. J. Autom. Comput
,
3
(
3
), pp.
271
281
.10.1007/s11633-006-0271-x
4.
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Manesis
,
S.
,
2011
, “
A Survey on Applications of Pneumatic Artificial Muscles
,”
19th Mediterranean Conference on Control and Automation
, Corfu, Greece, June 20–23, pp.
1439
1446
.10.1109/MED.2011.5982983
5.
Festo
,
2016
, “
DMSP Fluidic Muscle DMSP/MAS
,” Germany.
6.
Bicchi
,
A.
, and
Tonietti
,
G.
,
2004
, “
Fast and ‘Soft-Arm’ Tactics: Dependability in Human-Friendly Robots
,”
IEEE Robot. Autom. Mag.
,
11
(
2
), pp.
22
33
.10.1109/MRA.2004.1310939
7.
Leidner
,
D.
,
Borst
,
C.
,
Dietrich
,
A.
,
Beetz
,
M.
, and
Albu-Schaffer
,
A.
,
2015
, “
Classifying Compliant Manipulation Tasks for Automated Planning in Robotics
,”
IEEE
International Conference on Intelligent Robots and System
, Hamburg, Germany, Sept. 28–Oct. 2, pp.
1769
1776
.10.1109/IROS.2015.7353607
8.
Daerden
,
F.
, and
Lefeber
,
D.
,
2002
, “
Pneumatic Artificial Muscles: Actuators for Robotics and Automation
,”
Eur. J. Mech. Environ. Eng.
,
47
(
1
), pp.
11
21
.https://www.researchgate.net/publication/247194653_Pneumatic_Artificial_Muscles_actuators_for_robotics_and_automation
9.
Sakthivelu
,
V.
,
Chong
,
S. H.
,
Tan
,
M. H.
, and
Ghazaly
,
M. M.
,
2016
, “
Phenomenological Modeling and Classic Control of a Pneumatic Muscle Actuator System
,”
Int. J. Control Autom.
,
9
(
4
), pp.
301
312
.10.14257/ijca.2016.9.4.30
10.
Zang
,
X.
,
Liu
,
Y.
,
Heng
,
S.
,
Lin
,
Z.
, and
Zhao
,
J.
,
2017
, “
Position Control of a Single Pneumatic Artificial Muscle With Hysteresis Compensation Based on Modified Prandtl-Ishlinskii Model
,”
Biomed. Mater. Eng.
,
28
(
2
), pp.
131
140
.10.3233/BME-171662
11.
Kingsley
,
D. A.
,
Quinn
,
R. D.
, and
Ritzmann
,
R. E.
,
2006
, “
A Cockroach Inspired Robot With Artificial Muscles
,”
International Conference on Intelligent Robots and Systems
, Beijing, China, Oct. 9–15, pp.
659
666
.10.1109/IROS.2006.282229
12.
Davis
,
S.
, and
Caldwell
,
D.
,
2006
, “
Pneumatic Muscle Actuators for Humanoid applications—Sensor and Valve Integration
,”
Sixth IEEE-RAS International Conference on Humanoid Robot
, Genova, Italy, Dec. 4–6, pp.
456
461
.10.1109/ICHR.2006.321312
13.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modelling of McKibben Pneumatic Artificial Muscles
,”
Robot. Autom. IEEE Trans
,
12
(
1
), pp.
90
102
.10.1109/70.481753
14.
Meller
,
M. A.
,
Bryant
,
M.
, and
Garcia
,
E.
,
2014
, “
Reconsidering the McKibben Muscle: Energetics, Operating Fluid, and Bladder Material
,”
J. Intell. Mater. Syst. Struct.
,
25
(
18
), pp.
2276
2293
.10.1177/1045389X14549872
15.
McGinn
,
C.
,
Cullinan
,
M. F.
,
Otubela
,
M.
, and
Kelly
,
K.
,
2018
, “
Design of a Terrain Adaptive Wheeled Robot for Human-Orientated Environments
,”
Auton. Robots
,
43
, pp.
63
78
.https://doi.org/10.1007/s10514-018-9701-1
16.
Davis
,
S.
,
Canderle
,
J.
,
Artrit
,
P.
,
Tsagarakis
,
N.
, and
Caldwell
,
D. G.
,
2002
, “
Enhanced Dynamic Performance in Pneumatic Muscle Actuators
,”
Proceedings of 2002 IEEE International Conference on Robotics Automation
, Vol.
3,
Washington, DC, May 11–15, pp.
2836
2841
.
17.
Davis
,
S.
,
Tsagarakis
,
N.
,
Canderle
,
J.
, and
Caldwell
,
D. G.
,
2003
, “
Enhanced Modelling and Performance in Braided Pneumatic Muscle Actuators
,”
Int. J. Rob. Res.
,
22
(
3–4
), pp.
213
227
.10.1177/0278364903022003006
18.
Driver
,
T.
, and
Shen
,
X.
,
2013
, “
Sleeve Muscle Actuator: Concept and Prototype Demonstration
,”
J. Bionic Eng.
,
10
(
2
), pp.
222
230
.10.1016/S1672-6529(13)60218-8
19.
Driver
,
T.
, and
Shen
,
X.
,
2014
, “
Design and Control of a Sleeve Muscle-Actuated Robotic Elbow
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p.
041023
.10.1115/1.4026834
20.
Zheng
,
H.
, and
Shen
,
X.
,
2013
, “
Sleeve Muscle Actuator and Its Application in Transtibial Prostheses
,”
IEEE Int. Conf. Rehabil. Rob.
,
18
(
11
), pp.
1492
1501
.10.1109/ICORR.2013.6650444
21.
Zheng
,
H.
, and
Shen
,
X.
,
2013
, “
Double-Acting Sleeve Muscle Actuator for Bio-Robotic Systems
,”
Actuators
,
2
(
4
), pp.
129
144
.10.3390/act2040129
22.
Cullinan
,
M. F.
,
Bourke
,
E.
,
Kelly
,
K.
, and
McGinn
,
C.
,
2017
, “
A Mckibben Type Sleeve Pneumatic Muscle and Integrated Mechanism for Improved Stroke Length
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011013
.10.1115/1.4035496
23.
Reynolds
,
D. B.
,
Repperger
,
D. W.
,
Phillips
,
C. A.
, and
Bandry
,
G.
,
2003
, “
Modeling the Dynamic Characteristics of Pneumatic Muscle
,”
Ann. Biomed. Eng.
,
31
(
3
), pp.
310
317
.10.1114/1.1554921
24.
LCM Systems Ltd.
,
2015
, “
STA-1 Aluminium S Type Tension & Compression Load Cell
,” LCM Systems Ltd., New Port, UK.
25.
Mantracourt Electronics Ltd.
,
2011
, “
DSC Digital Strain Gauge to Data Converter
,” Mantracourt Electronics Ltd., Exeter, UK.
26.
Honeywell
,
2014
, “
TruStability Board Mount Pressure Sensors HSC Series—High Accuracy, Compensated/Amplified
,” Charlotte, NC.
27.
Novotechnik U.S, Inc.
,
2014
, “
Position Transducer Potentiometric Up to 150 mm Series T/TS
,” Southborough, MA.
28.
Matrix SpA
,
2017
, “
Solenoid Valves 720 Series 2/2 3/2
,” Italy.
29.
Sirotti
,
M.
,
2016
, “
Tubo in Lattice ‘DRELAX’ (TDS 1416)
,” ALGAM - I.A.I, Novate Milanese MI, Italy.
30.
Klute
,
G. K.
, and
Hannaford
,
B.
,
1998
, “
Fatigue Characteristics of McKibben Artificial Muscle Actuators
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications, Victoria, BC, Canada, Oct. 17, pp.
1776
1781
.10.1109/IROS.1998.724854
31.
Woods
,
B. K.
,
Gentry
,
M. F.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
,
2012
, “
Fatigue Life Testing of Swaged Pneumatic Artificial Muscles as Actuators for Aerospace Applications
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
327
343
.10.1177/1045389X11433495
32.
Bubert
,
E. A.
,
2009
, “
Highly Extensible Skin for a Variable Wing-Span Morphing Aircraft Utilizing Pneumatic Artificial Muscle
,” Masters dissertation,
University of Maryland
, College Park, MD.
33.
Serres
,
J. L.
,
Reynolds
,
D. B.
,
Phillips
,
C. A.
,
Gerschutz
,
M. J.
, and
Repperger
,
D. W.
,
2009
, “
Characterisation of a Phenomenological Model for Commercial Pneumatic Muscle Actuators
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
423
430
.10.1080/10255840802654327
34.
Serres
,
J. L.
,
2008
, “
Dynamic Characterization of a Pneumatic Muscle Actuator and Its Application to a Resistive Training Device
,” Ph.D. dissertation,
Wright State University
, Dayton, OH.
35.
Serres
,
J. L.
,
Reynolds
,
D. B.
,
Phillips
,
C. A.
,
Rogers
,
D. B.
, and
Repperger
,
D. W.
,
2010
, “
Characterisation of a Pneumatic Muscle Test Station With Two Dynamic Plants in Cascade
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
1
), pp.
11
18
.10.1080/10255840902948017
36.
International Standards Organisation (ISO)
,
2014
, “
ISO6358—Pneumatic Fluid power—Determination of Flow-Rate Characteristics of Components Using Compressible Fluids
,” Geneva, Switzerland.
37.
Matrix SpA
,
2018
, “
CURVE di Porta BX721 Serie
,” Italy, p.
7
.
38.
Richer
,
E.
, and
Hurmuzlu
,
Y.
,
2000
, “
A High Performance Pneumatic Force Actuator System—Part II: Nonlinear Controller Design
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
3
), pp.
426
434
.10.1115/1.1286366
39.
Woods
,
B. K. S.
,
Kothera
,
C. S.
,
Wang
,
G.
, and
Wereley
,
N. M.
,
2014
, “
Dynamics of a Pneumatic Artificial Muscle Actuation System Driving a Trailing Edge Flap
,”
Smart Mater. Struct.
,
23
(
9
), p.
095014
.10.1088/0964-1726/23/9/095014
40.
Kim
,
Y. J.
,
2015
, “
Design of Low Inertia Manipulator With High Stiffness and Strength Using Tension Amplifying Mechanisms
,”
IEEE
International Conference on Intelligence and Robotic System, Hamburg, Germany, Sept. 28–Oct. 2, pp.
5850
5856
.10.1109/IROS.2015.7354208
41.
Lee
,
J.
,
Kim
,
Y.
,
Roh
,
S.
,
Kim
,
J.
,
Lee
,
Y.
,
Kim
,
J.
,
Choi
,
B.
, and
Roh
,
K.
,
2013
, “
Tension Propagation Analysis of Novel Robotized Surgical Platform for Transumbilical Single-Port Access Surgery
,” 2013
IEEE/RSJ
International Conference on Intelligence and Robotic System
, Tokyo, Japan, Nov. 3–7, pp.
3083
3089
.10.1109/IROS.2013.6696793
You do not currently have access to this content.