Abstract

A respiratory mechanics model of the human lung is developed for studying pressure-compensated breathing through a respiration mask in low-ambient pressure environments encountered during high-altitude flight. The model formulation is described using a bond graph (BG) approach to convey the key elements used to capture critical effects in lung airways and effects of dissipative and energy storing processes. Specific extensions to constitutive relations are described, along with derivation and solution of system state equations via simulation. Gas exchange effects are not incorporated in the model, with emphasis placed on developing and assessing a respiratory mechanics model for integration with breathing support systems. Results from several case studies with variations in the lung characteristics and operational conditions are presented to demonstrate the effectiveness of the model in predicting key physiological measures, reported in the form of flow-volume loops and work of breathing (WoB). Favorable comparisons with the past results reported in the literature confirm the suitability of this model as part of a system-level model capable of guiding modifications and explaining anomalous behavior in these critical systems.

References

1.
Eckstein
,
M.
,
2019
, “
Navy Rules Out Suspected Physiological Episodes Cause While Super Hornet Rates Grow in 2019
,” USNI News, Annapolis, MD, accessed July 31, 2019, https://news.usni.org/2019/04/04/navy-rules-out-contamination-as-physiological-episodes-cause-focused-on-air-pressure-as-super-hornet-rates-still-high
2.
Cragg
,
C. H.
,
2017
, “
F/A-18 and E/A-18 Fleet Physiological Episodes
,” NASA, Washington, DC, Report No. NESC-RP-17-01205.
3.
Nowland
,
M. C.
,
2018
, “
Physiological Episodes Update
,” Department of Air Force Presentation to Subcommittee Readiness Committee Armed Service United States House Representatives, U.S. Air Force, accessed Jan. 20, 2020, https://docs.house.gov/meetings/AS/AS25/20180206/106824/HHRG-115-AS25-Wstate-NowlandM-20180206.pdf
4.
Moran
,
W.
,
2017
, “
T-45 Aircraft Goshawk PE Report
,” U.S. Navy, Washington, DC, accessed May 28, 2020, https://www.secnav.navy.mil/foia/readingroom/HotTopics/T-45%20Aircraft%20Goshawk%20PE%20Report/CRT%20 PE%20Report%20%20(Redacted).pdf
5.
Byrne
,
J.
,
Hartmann
,
B.
,
Mcilwain-Axten
,
C.
, and
Donaher
,
P.
,
1993
, “
Mathematical Modeling of an Advanced Aircrew Breathing System
,”
IEEE Annual Northeast Bioengineering Conference
, Newark, NJ, Mar. 18–19, pp.
72
74
.10.1109/NEBC.1993.404410
6.
Byrne
,
J. C.
, and
McIlwain-Axten
,
C. J.
,
1992
, “
An Analytical Model of the Aircrew Oxygen Breathing System
,”
SAFE J.
,
22
(
6
), pp.
8
14
.
7.
Peslin
,
R.
,
Papon
,
J.
,
Duviver
,
C.
, and
Richalet
,
J.
,
1975
, “
Frequency Response of the Chest: Modeling and Parameter Estimation
,”
J. Appl. Physiol.
,
39
(
4
), pp.
523
534
.10.1152/jappl.1975.39.4.523
8.
Margolis
,
D.
, and
Tabrizi
,
M.
,
1983
, “
Acoustic Modeling of Lung Dynamics Using Bond Graphs
,”
ASME J. Biomech. Eng.
,
105
(
1
), pp.
84
91
.10.1115/1.3138390
9.
Liu
,
C. H.
,
Niranjan
,
S. C.
,
Clark
,
J. W.
,
San
,
K. Y.
,
Zwischenberger
,
J. B.
, and
Bidani
,
A. A.
,
1998
, “
Airway Mechanics, Gas Exchange, and Blood Flow in a Nonlinear Model of the Normal Human Lung
,”
J. Appl. Physiol.
,
84
(
4
), pp.
1447
1469
.10.1152/jappl.1998.84.4.1447
10.
Athanasiades
,
A.
,
Ghorbel
,
F.
,
Clark
,
J. W.
,
Niranjan
,
S. C.
,
Olansen
,
J.
,
Zwischenberger
,
J. B.
, and
Bidani
,
A.
,
2000
, “
Energy Analysis of a Nonlinear Model of the Normal Human Lung
,”
J. Biol. Syst.
,
8
(
2
), pp.
115
139
.10.1142/S0218339000000080
11.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
2012
,
System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems
, 5th ed.,
Wiley
,
Hoboken, NJ
.
12.
Beaman
,
J.
,
1985
, “
A Dynamic Model of a Pressure Swing Oxygen Generation System
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
2
), pp.
111
116
.10.1115/1.3149681
13.
Lachenbruch
,
C.
, and
Diller
,
K.
,
1999
, “
A Network Thermodynamic Model of Kidney Perfusion With a Cryoprotective Agent
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
574
583
.10.1115/1.2800856
14.
Jiang
,
Y.
,
Sun
,
Q.
,
Tan
,
P.
, and
Chen
,
Z.
,
2016
, “
Modeling and Simulation of an Electronic Oxygen Regulator Based on All-Coefficient Adaptive Control
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
8
), p.
081010
.10.1115/1.4033413
15.
Fix
,
L. E.
,
Khoury
,
J.
,
Moores
,
R.
,
Linkous
,
L.
,
Brandes
,
M.
, and
Rozycki
,
H.
,
2018
, “
Theoretical Open-Loop Model of Respiratory Mechanics in the Extremely Preterm Infant
,”
PLoS One
,
13
(
6
), p.
e0198425
.10.1371/journal.pone.0198425
16.
Suki
,
B.
,
Barabási
,
A.
, and
Lutchen
,
K. R.
,
1994
, “
Lung Tissue Viscoelastisticity: A Mathematical Framework and Its Molecular Basis
,”
J. Appl. Physiol.
,
76
(
6
), pp.
2749
2759
.10.1152/jappl.1994.76.6.2749
17.
Gradwell
,
D. P.
,
2016
,
Ernsting's Aviation and Space Medicine
, 5th ed.,
CRC Press
,
Boca Raton, FL
, pp.
65
78
.
18.
Ward
,
J.
, and
Jane Ward
,
R. L.
,
2015
,
The Respiratory System at a Glance
, 5th ed., Vol.
1
,
Wiley
, West Sussex, UK.
19.
Pedotti
,
A.
,
2014
,
Mechanics of Breathing
, 2nd ed., Vol.
1
,
Springer
,
New York
, pp.
342
343
.
20.
Le Rolle
,
V.
,
Samson
,
N.
,
Praud
,
J.-P.
, and
Hernández
,
A.
,
2013
, “
Mathematical Modeling of Respiratory System Mechanics in the Newborn Lamb
,”
Acta Biotheor.
,
61
(
1
), pp.
91
107
.10.1007/s10441-013-9175-7
21.
Patel
,
R. R.
,
Dubrovskiy
,
D.
, and
Döllinger
,
M.
,
2014
, “
Measurement of Glottal Cycle Characteristics Between Children and Adults: Physiological Variations
,”
J. Voice
,
28
(
4
), pp.
476
486
.10.1016/j.jvoice.2013.12.010
22.
Herbst
,
C. T.
,
Lohscheller
,
J.
,
Vec
,
J. G.
,
Henrich
,
N.
,
Weissengruber
,
G.
, and
Fitch
,
W. T.
,
2014
, “
Glottal Opening and Closing Events Investigated by Electroglottography and Super-High-Speed Video Recordings
,”
J. Exp. Biol.
,
217
(
6
), pp.
955
963
.10.1242/jeb.093203
23.
Yang
,
P.
,
Frier
,
B. C.
,
Goodman
,
L.
, and
Duffin
,
J.
,
2007
, “
Respiratory Muscle Training and the Performance of a Simulated Anti-g Straining Maneuver
,”
Aviation, Space, Environ. Med.
,
78
(
11
), pp.
1035
1041
.10.3357/ASEM.2048.2007
24.
Oostveen
,
E.
,
Peslin
,
R.
,
Gallina
,
C.
, and
Zwart
,
A.
,
1989
, “
Flow and Volume Dependence of Respiratory Mechanical Properties Studied by Forced Oscillation
,”
Appl. Physiol.
,
67
, pp.
2122
2218
.10.1152/jappl.1989.67.6.2212
25.
Marchal
,
F.
,
Hauouzi
,
P.
,
Peslin
,
R.
,
Duvivier
,
C.
, and
Gallina
,
C.
,
1992
, “
Mechanical Properties of the Upper Airway Wall in Children and Their Influence on Respiratory Impedance Measurements
,”
Pediatr. Pulmonol.
,
13
(
1
), pp.
28
33
.10.1002/ppul.1950130108
26.
Peslin
,
R.
,
Duvivier
,
C.
, and
Jardin
,
P.
,
1984
, “
Upper Airways Impedance Measured With Head Plethysmograph
,”
Appl. Physiol.
,
57
(
2
), pp.
596
900
.10.1152/jappl.1984.57.2.596
27.
Yao
,
K.
,
Goto
,
K.
,
Nishimura
,
A.
,
Shimazu
,
R.
,
Tachikawa
,
S.
, and
Takehiko
,
I.
,
2019
, “
A Formula for Estimating the Appropriate Tube Depth for Intubation
,”
Anethesia Prog.
,
66
(
1
), pp.
8
13
.10.2344/anpr-65-04-04
28.
Serghides
,
T. K.
,
1984
, “
Estimate Friction Factor Accurately
,”
Chem. Eng.
,
91
(
5
), pp.
63
64
.
29.
Jonson
,
B.
,
Beydon
,
L.
,
Brauer
,
K.
,
Månsson
,
C.
,
Valind
,
S.
, and
Grytzell
,
H.
,
1993
, “
Mechanics of Respiratory System in Healthy Anesthetized Human With Emphasis on Viscoelastic Properties
,”
Appl. Physiol.
,
75
(
1
), pp.
132
140
.10.1152/jappl.1993.75.1.132
30.
Cabello
,
B.
, and
Mancebo
,
J.
,
2006
, “
Work of Breathing
,”
Intensive Care Med.
,
32
(
9
), pp.
1311
1314
.10.1007/s00134-006-0278-3
31.
Tacker
,
W.
,
Balldin
,
U.
,
Burton
,
R.
,
Glaister
,
D.
,
Gillingham
,
K.
, and
Mercer
,
J.
,
1987
, “
Induction and Prevention of Acceleration Atelectasis
,”
Aviation, Space, Environ. Med.
,
58
(
1
), pp.
69
75
.https://europepmc.org/article/med/3545176
You do not currently have access to this content.