Abstract

This paper presents a novel discrete-time sliding mode control (DSMC) for a general class of discrete-time chaotic systems with input nonlinearity and uncertainties. Unlike the conventional sliding mode control (SMC), the sliding surface is constructed by applying the eigenvalue assignment method to the overall system in discrete-time domain, not to the reduced system on the sliding mode in continue-time domain. The design of sliding surface and the existence of quasi-sliding mode are two significant issues, which have been addressed. The stability of the overall closed-loop system is guaranteed. In addition, the undesirable chattering phenomenon and the reaching phase are eliminated. Simulation results demonstrate the feasibility and effectiveness of the proposed scheme.

References

1.
Vaidyanathan
,
S.
, and
Sampath
,
S.
,
2011
, “
Global Chaos Synchronization of Hyperchaotic Lorenz Systems by Sliding Mode Control
,”
Adv. Digital Image Process. Inf. Technol. Commun. Comput. Inf. Sci.
,
205
, pp.
156
164
.10.1007/978-3-642-24055-3_16
2.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.10.1103/PhysRevLett.64.1196
3.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
(
8
), pp.
821
824
.10.1103/PhysRevLett.64.821
4.
Nazzal
,
J. M.
, and
Natsheh
,
A. N.
,
2007
, “
Chaos Control Using Sliding Mode Theory
,”
Chaos, Solitons Fractals
,
33
(
2
), pp.
695
702
.10.1016/j.chaos.2006.01.071
5.
Yan
,
J. J.
,
Yang
,
Y. S.
,
Chiang
,
T. Y.
, and
Chen
,
C. Y.
,
2007
, “
Robust Synchronization of Unified Chaotic Systems Via Sliding Mode Control
,”
Chaos, Solitons Fractals
,
34
(
3
), pp.
947
954
.10.1016/j.chaos.2006.04.003
6.
Aghababa
,
M. P.
, and
Akbari
,
M. E.
,
2012
, “
A Chattering-Free Robust Adaptive Sliding Mode Controller for Synchronization of Two Different Chaotic Systems With Unknown Uncertainties and External Disturbances
,”
Appl. Math. Comput.
,
218
(
9
), pp.
5757
5768
.10.1016/j.amc.2011.11.080
7.
Pai
,
M. C.
,
2012
, “
Adaptive Sliding Mode Observer-Based Synchronization for Uncertain Chaotic Systems
,”
Asian J. Control
,
14
(
3
), pp.
736
743
.10.1002/asjc.290
8.
Mobayen
,
S.
,
Baleanu
,
D.
, and
Tchier
,
F.
,
2017
, “
Second-Order Fast Terminal Sliding Mode Control Design Based on LMI for a Class of Non-Linear Uncertain Systems and Its Application to Chaotic Systems
,”
J. Vib. Control
,
23
(
18
), pp.
2912
2925
.10.1177/1077546315623887
9.
Dadras
,
S.
,
Dadras
,
S.
, and
Momeni
,
H.
,
2017
, “
Linear Matrix Inequality Based Fractional Integral Sliding-Mode Control of Uncertain Fractional-Order Nonlinear Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
11
), p.
111003
.10.1115/1.4036807
10.
Mobayen
,
S.
,
2018
, “
Chaos Synchronization of Uncertain Chaotic Systems Using Composite Nonlinear Feedback Based Integral Sliding Mode Control
,”
ISA Trans.
,
77
, pp.
100
111
.10.1016/j.isatra.2018.03.026
11.
Mohammadpour
,
S.
, and
Binazadeh
,
T.
,
2018
, “
Robust Finite-Time Synchronization of Uncertain Chaotic Systems: Application on Duffing-Holmes System and Chaos Gyros
,”
Syst. Sci. Control Eng.
,
6
(
1
), pp.
28
36
.10.1080/21642583.2018.1428695
12.
Mofid
,
O.
,
Mobayen
,
S.
, and
Khooban
,
M. H.
,
2018
, “
Sliding Mode Disturbance Observer Control Based on Adaptive Synchronization in a Class of Fractional‐Order Chaotic Systems
,”
Int. J. Adapt. Control Signal Process.
,
33
(
3
), pp.
462
474
.10.1002/acs.2965
13.
Song
,
C.
,
Fei
,
S.
,
Cao
,
J.
, and
Huang
,
C.
,
2019
, “
Robust Synchronization of Fractional-Order Uncertain Chaotic Systems Based on Output Feedback Sliding Mode Control
,”
Mathematics
,
7
(
7
), p.
599
.10.3390/math7070599
14.
Yang
,
C. C.
, and
Lin
,
C. L.
,
2015
, “
Adaptive Sliding Mode Control for Chaotic Synchronization of Oscillator With Input Nonlinearity
,”
J. Vib. Control
,
21
(
3
), pp.
601
610
.10.1177/1077546313487243
15.
Pai
,
M. C.
,
2016
, “
Quasi-Output Feedback Global Sliding Mode Tracker for Uncertain Systems With Input Nonlinearity
,”
Nonlinear Dyn.
,
86
(
2
), pp.
1215
1225
.10.1007/s11071-016-2958-z
16.
Afshari
,
M.
,
Mobayen
,
S.
,
Hajmohammadi
,
R.
, and
Baleanu
,
D.
,
2018
, “
Global Sliding Mode Control Via Linear Matrix Inequality Approach for Uncertain Chaotic Systems With Input Nonlinearities and Multiple Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
3
), p.
031008
.10.1115/1.4038641
17.
Mohammadpour
,
S.
, and
Binazadeh
,
T.
,
2018
, “
Observer-Based Synchronization of Uncertain Chaotic Systems Subject to Input Saturation
,”
Trans. Inst. Meas. Control
,
40
(
8
), pp.
2526
2535
.10.1177/0142331217705435
18.
Mystkowski
,
A.
,
2019
, “
Lyapunov Sliding-Mode Observers With Application for Active Magnetic Bearing Operated With Zero-Bias Flux
,”
ASME J. Dyn. Sys. Meas. Control
,
141
(
4
), p.
041006
.10.1115/1.4041978
19.
Pai
,
M. C.
,
2019
, “
Synchronization of Unified Chaotic Systems Via Adaptive Nonsingular Fast Terminal Sliding Mode Control
,”
Int. J. Dyn. Control
,
7
(
3
), pp.
1101
1109
.10.1007/s40435-018-0486-z
20.
Cruz-Zavala
,
E.
,
Moreno
,
J. A.
, and
Fridman
,
L.
,
2013
, “
Fast Second-Order Sliding Mode Control Design Based on Lyapunov Function
,”
IEEE Conference on Decision and Control
, Florence, Italy, Dec. 10–13, pp.
2858
2863
.10.1109/CDC.2013.6760317
21.
Kochalummoottil
,
J.
,
Shtessel
,
Y. B.
,
Moreno
,
J. A.
, and
Fridman
,
L.
,
2011
, “
Adaptive Twist Sliding Mode Control: A Lyapunov Design
,”
IEEE Conference on Decision and Control and European Control Conference
, Orlando, FL, Dec. 10–15, pp.
7623
7628
.10.1109/CDC.2011.6160982
22.
Yan
,
B.
,
Dai
,
P.
,
Liu
,
R.
,
Xing
,
M.
, and
Liu
,
S.
,
2019
, “
Adaptive Super-Twisting Sliding Mode Control of Variable Sweep Morphing Aircraft
,”
Aerosp. Sci. Technol.
,
92
, pp.
198
210
.10.1016/j.ast.2019.05.063
23.
Pai
,
M.
,
2020
, “
Adaptive Super-Twisting Terminal Sliding Mode Control for Nonlinear Systems With Multiple Inputs
,”
Int. J. Dyn. Control
,
8
(
2
), pp.
666
674
.10.1007/s40435-019-00593-y
24.
Majidabad
,
S. S.
, and
Shandiz
,
H. T.
,
2013
, “
Discrete-Time Terminal Sliding Mode Control of Chaotic Lorenz System
,”
J. Control Syst. Eng.
,
1
(
1
), pp.
1
8
.10.18005/JCSE0101001
25.
Pai
,
M. C.
,
2014
, “
Global Synchronization of Uncertain Chaotic Systems Via Discrete-Time Sliding Mode Control
,”
Appl. Math. Comput.
,
227
, pp.
663
671
.10.1016/j.amc.2013.11.075
26.
Yan
,
J.-J.
,
Chen
,
C.-Y.
, and
Tsai
,
S.-H.
,
2016
, “
Hybrid Chaos Control of Continuous Unified Chaotic Systems Using Discrete Rippling Sliding Mode Control
,”
Nonlinear Anal. Hybrid Syst.
,
22
, pp.
276
283
.10.1016/j.nahs.2016.05.004
27.
Hu
,
F.
,
2017
, “
Sliding Mode Control of Discrete Chaotic System Based on Multimodal Function Series Coupling
,”
Math. Probl. Eng.
,
2017
, pp.
1
11
.10.1155/2017/8423413
28.
Draženović
,
B.
,
1969
, “
The Invariance Conditions in Variable Structure Systems
,”
Automatica
,
5
(
3
), pp.
287
295
.10.1016/0005-1098(69)90071-5
29.
Utkin
,
V. I.
,
1977
, “
Sliding Mode Systems With Sliding Modes
,”
IEEE Trans. Autom. Control
,
22
(
2
), pp.
212
222
.10.1109/TAC.1977.1101446
30.
Mobayen
,
S.
, and
Tchier
,
F.
,
2017
, “
Design of an Adaptive Chattering Avoidance Global Sliding Mode Tracker for Uncertain Non-Linear Time-Varying Systems
,”
Trans. Inst. Meas. Control
,
39
(
10
), pp.
1547
1558
.10.1177/0142331216644046
31.
Spurgeon
,
S. K.
,
1992
, “
Hyperplane Design Techniques for Discrete-Time Variable Structure Control Systems
,”
Int. J. Control
,
55
(
2
), pp.
445
456
.10.1080/00207179208934248
32.
Chang
,
J. L.
,
2008
, “
Discrete Sliding-Mode Control of MIMO Linear Systems
,”
Asian J. Control
,
4
(
2
), pp.
217
222
.10.1111/j.1934-6093.2002.tb00348.x
33.
Utkin
,
V. I.
,
1993
,
Sliding Modes in Control Optimization
,
Springer-Verlag
,
New York
.
34.
Yu
,
H. C.
, and
Liu
,
T. S.
,
2008
, “
Sliding Mode Control Using Virtual Eigenvalue Method for Compact Optical Image Stabilization Actuators
,”
IEEE Trans. Magn.
,
44
(
11
), pp.
4074
4077
.10.1109/TMAG.2008.2002787
35.
Hsiao
,
W. Y.
, and
Chiang
,
H. H.
,
2012
, “
Sliding-Mode-Control With Filtered State- Feedback or Disturbance Attenuation of Active Suspension Systems
,”
Int. J. Eng. Ind.
,
3
(
1
), pp.
67
78
.10.4156/ijei.vol3.issue1.7
36.
Sarpturk
,
S. Z.
,
Istefanopulos
,
Y.
, and
Kaynak
,
O.
,
1987
, “
On the Stability of Discrete-Time Sliding Mode Control Systems
,”
IEEE Trans. Autom. Control
,
32
(
10
), pp.
930
937
.10.1109/TAC.1987.1104468
You do not currently have access to this content.