Abstract

A novel robust approach for the obedience control of Furuta pendulum with uncertainty is proposed. The uncertainty considered in this paper is (possibly fast) time-varying and bounded, which may exist in any stage of the pendulum subsystem. By the Lagrangian formulation of the nonlinear pendulum system, a robust control, based on a general Lyapunov function, is designed to render the Furuta pendulum a position obedience. As a consequence of the Lyapunov approach, the control design is not restricted to linearize the pendulum system. The system performance under the proposed control is guaranteed as uniform boundedness and uniform ultimate boundedness. The salient features of this new control are demonstrated both analytically and numerically. The experiment is conducted in the Furuta pendulum system to prove the validity and effectiveness of the control design.

References

1.
Furuta
,
K.
,
Yamakita
,
M.
, and
Kobayashi
,
S.
,
1992
, “
Swing-Up Control of Inverted Pendulum Using Pseudo-State Feedback
,”
J. Syst. Control Eng.
,
206
(
6
), pp.
263
269
.10.1243/PIME_PROC_1992_206_341_02
2.
Cazzolato
,
B. S.
, and
Prime
,
Z.
,
2011
, “
On the Dynamics of the Furuta Pendulum
,”
J. Control Sci. Eng.
,
2011
, p.
528341
.10.1155/2011/528341.
3.
Maiti
,
S.
,
Roy
,
J.
,
Mallik
,
A. K.
, and
Bhattacharjee
,
J. K.
,
2016
, “
Nonlinear Dynamics of a Rotating Double Pendulum
,”
Phys. Lett. A
,
380
(
3
), pp.
408
412
.10.1016/j.physleta.2015.11.003
4.
Olfati-Saber
,
R.
,
2000
, “
Cascade Normal Forms for Underactuated Mechanical Systems
,”
39th IEEE Conference on Decision and Control
(
CDC
), Sydney, Australia, Dec. 12–15, pp.
2162
2167
.10.1109/CDC.2000.914115
5.
Olfati-Saber
,
R.
,
2002
, “
Normal Forms for Underactuated Mechanical Systems With Symmetry
,”
IEEE Trans. Autom.
,
47
(
2
), pp.
305
308
.10.1109/9.983365
6.
Han
,
N.
, and
Cao
,
Q.
,
2016
, “
Global Bifurcations of a Rotating Pendulum With Irrational Nonlinearity
,”
Commun. Nonlinear Sci. Numer. Simul.
,
36
, pp.
431
445
.10.1016/j.cnsns.2015.12.009
7.
Furuta
,
K.
, and
Iwase
,
M.
,
2004
, “
Swing-Up Time Analysis of Pendulum
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
52
(
3
), pp.
153
163
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.666.5346&rep=rep1&type=pdf
8.
Aguilar-Avelar
,
C.
, and
Moreno-Valenzuela
,
J.
,
2015
, “
A Composite Controller for Trajectory Tracking Applied to the Furuta Pendulum
,”
ISA Trans.
,
57
, pp.
286
294
.10.1016/j.isatra.2015.02.009
9.
Prasad
,
L. B.
,
Tyagi
,
B.
, and
Gupta
,
H. O.
,
2014
, “
Optimal Control of Nonlinear Inverted Pendulum System Using PID Controller and LQR: Performance Analysis Without and With Disturbance Input
,”
Int. J. Autom. Comput.
,
11
(
6
), pp.
661
670
.10.1007/s11633-014-0818-1
10.
Chen
,
W.
, and
Theodomile
,
N.
,
2016
, “
Simulation of a Triple Inverted Pendulum Based on Fuzzy Control
,”
World J. Eng. Technol.
,
4
(
2
), pp.
267
272
.10.4236/wjet.2016.42026
11.
Song
,
Z.
,
Song
,
X.
,
Liu
,
C.
, and
Zhao
,
Y.
,
2013
, “
Research on Real-Time Simulation and Control of Linear 1-Stage Inverted Pendulum
,”
J. Comput.
,
8
(
4
), pp.
896
903
.10.4304/jcp.8.4.896-903
12.
Saedian
,
A.
,
Zarabadipour
,
H.
,
Shoorehdeli
,
M. A.
, and
Farivar
,
F.
,
2012
, “
Inverted Pendulum Fault Tolerant Control Based on Fuzzy Backstepping Design and Anti-Control of Chaos
,”
IFAC Proc. Vol.
,
45
(
12
), pp.
243
248
.10.3182/20120620-3-MX-3012.00013
13.
Nor
,
M. K. B. M.
, and
Okubo
,
S.
,
2012
, “
Fuzzy Servo Control of an Inverted Pendulum System
,”
Artif. Life Rob.
,
17
(
2
), pp.
245
250
.10.1007/s10015-012-0054-0
14.
Zhong
,
W.
, and
Rock
,
H.
,
2001
, “
Energy and Passivity Based Control of the Double Inverted Pendulum on a Cart
,”
IEEE International Conference on Control Applications
(
CCA
), Mexico City, Mexico, Sept. 7, pp.
896
901
.10.1109/CCA.2001.973983
15.
Prasad
,
L. B.
,
Gupta
,
H. O.
, and
Tyagi
,
B.
,
2014
, “
Adaptive Optimal Control of Nonlinear Inverted Pendulum System Using Policy Iteration Technique
,”
Third International Conference on Advances in Control and Optimization of Dynamical Systems
, Kanpur, India, Mar., pp.
1138
1145
.
16.
Akhtaruzzaman
,
M.
, and
Shafie
,
A. A.
,
2010
, “
Modeling and Control of a Rotary Inverted Pendulum Using Various Methods, Comparative Assessment and Result Analysis
,”
International Conference on Mechatronics and Automation
, Xi'an, China, Aug. 4–7, pp.
1342
1347
.10.1109/ICMA.2010.5589450
17.
Jung
,
S.
,
Cho
,
H.-T.
, and
Hsia
,
T. C.
,
2007
, “
Neural Network Control for Position Tracking of a Two-Axis Inverted Pendulum System: Experimental Studies
,”
IEEE Trans. Neural Networks
,
18
(
4
), pp.
1042
1048
.10.1109/TNN.2007.899128
18.
Lu
,
H.-C.
,
Chang
,
M.-H.
, and
Tsai
,
C.-H.
,
2011
, “
Adaptive Self-Constructing Fuzzy Neural Network Controller for Hardware Implementation of an Inverted Pendulum System
,”
Appl. Soft Comput.
,
11
(
5
), pp.
3962
3975
.10.1016/j.asoc.2011.02.025
19.
Chen
,
Y.-F.
, and
Huang
,
A.-C.
,
2014
, “
Adaptive Control of Rotary Inverted Pendulum System With Time-Varying Uncertainties
,”
Nonlinear Dyn.
,
76
(
1
), pp.
95
102
.10.1007/s11071-013-1112-4
20.
Kharola
,
A.
,
2016
, “
Design of a Hybrid Adaptive Neuro Fuzzy Inference System ANFIS Controller for Position and Angle Control of Inverted Pendulum IP Systems
,”
Int. J. Fuzzy Syst. Appl.
,
5
(
1
), pp.
27
42
.10.4018/IJFSA.2016010102
21.
Wilson
,
J.
,
Charest
,
M.
, and
Dubay
,
R.
,
2016
, “
Non-Linear Model Predictive Control Schemes With Application on a 2 Link Vertical Robot Manipulator
,”
Rob. Comput.-Integr. Manuf.
,
41
, pp.
23
30
.10.1016/j.rcim.2016.02.003
22.
Yu
,
C. H.
,
Wang
,
F. C.
, and
Lu
,
Y. J.
,
2010
, “
Robust Control of a Furuta Pendulum
,”
SICE Annual Conference
, Taipei, Taiwan, Aug. 18–21, pp.
2559
2563
.https://ieeexplore.ieee.org/document/5602458
23.
Chen
,
Y. F.
, and
Huang
,
A. C.
,
2010
, “
Controller Design for a Class of Underactuated Mechanical Systems
,”
IET Control Theory Appl.
,
6
(
1
), p.
103
.10.1049/iet-cta.2010.0667
24.
Sharma
,
R.
,
2016
, “
Lyapunov Theory Based Stable Markov Game Fuzzy Control for Non-Linear Systems
,”
Eng. Appl. Artif. Intell.
,
55
, pp.
119
127
.10.1016/j.engappai.2016.06.008
25.
Zhang
,
Y.
,
Wang
,
J.
, and
Li
,
H.
,
2012
, “
Stabilization of the Quadruple Inverted Pendulum by Variable Universe Adaptive Fuzzy Controller Based on Variable Gain H ∞ Regulator
,”
J. Syst. Sci. Complexity
,
25
(
5
), pp.
856
872
.10.1007/s11424-012-0011-y
26.
El-Bardini
,
M.
, and
El-Nagar
,
A. M.
,
2014
, “
Interval Type-2 Fuzzy PID Controller for Uncertain Nonlinear Inverted Pendulum System
,”
ISA Trans.
,
53
(
3
), pp.
732
743
.10.1016/j.isatra.2014.02.007
27.
Yue
,
M.
,
Wei
,
X.
, and
Li
,
Z.
,
2014
, “
Adaptive Sliding-Mode Control for Two-Wheeled Inverted Pendulum Vehicle Based on Zero-Dynamics Theory
,”
Nonlinear Dyn.
,
76
(
1
), pp.
459
471
.10.1007/s11071-013-1139-6
28.
Ashrafiuon
,
H.
, and
Whitman
,
A. M.
,
2012
, “
Closed-Loop Dynamic Analysis of a Rotary Inverted Pendulum for Control Design
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
2
), p.
024503
.10.1115/1.4005358
29.
Ngadengon
,
R.
,
Sam
,
Y. M.
,
Osman
,
J. H. S.
,
Tomari
,
R.
, and
Zakaria
,
W. N. W.
,
2015
, “
Multirate Output Feedback With Discrete Time Sliding Mode Control for Inverted Pendulum System
,”
Procedia Comput. Sci.
,
76
, pp.
290
295
.10.1016/j.procs.2015.12.293
30.
Wang
,
H. Q.
,
Wang
,
X. F.
,
Yang
,
Y. Y.
, and
Liao
,
W. D.
,
2012
, “
Development of Circular-Rail Double Inverted Pendulum Control Platform With Robust Control
,”
International Conference on Advanced Mechatronic Systems
, Tokyo, Japan, Sept. 18–21, pp.
180
184
.https://ieeexplore.ieee.org/document/6329705
31.
Chen
,
Y. H.
,
1995
, “
A New Matching Condition for Nonlinear Robust Control Design
,”
ASME J. Dyn. Syst., Meas., Control
,
117
(
4
), pp.
453
458
.10.1115/1.2801100
You do not currently have access to this content.