In this study, a task-space adaptive robust control methodology which takes uncertainties and external disturbances into account is proposed for a class of duct cleaning mobile manipulators. First of all, the configuration of the real duct cleaning robot is introduced, and the Jacobian matrix and the dynamic model of the real robotic system are obtained. Then, the structure of adaptive robust controller based on sliding mode control (SMC) approach and the fuzzy wavelet neural network is detailed, the proposed control approach combines the advantages of SMC which can suppress the external disturbances with the fuzzy wavelet neural network which can compensate the uncertainties by its strong ability to approximate a nonlinear function to an arbitrary accuracy, the stability of the whole robotic control system, the uniformly ultimately boundedness of tracking errors, and the boundedness of fuzzy wavelet neural networks weight estimation errors are all guaranteed based on the Lyapunov stability theory. Finally, simulation results are presented to demonstrate the superior performance of the proposed approach, and experiments are given to illustrate that the proposed approach is useful for real duct cleaning robot system with well performance.

References

1.
Pavlov
,
V.
,
1976
, “
Construction and Stabilization of Programmed Movement of a Mobile Robot-Manipulator
,”
Eng. Cybern.
,
14
(
6
), pp.
70
79
.
2.
Watanabe
,
K.
,
Sato
,
K.
,
Izumi
,
K.
, and
Kunitake
,
Y.
,
2000
, “
Analysis and Control for Omnidirectional Mobile Manipulator
,”
J. Intell. Rob. Syst.
,
27
(
1/2
), pp.
3
20
.
3.
Khatib
,
O.
,
1999
, “
Mobile Manipulation: The Robotic Assistant
,”
Rob. Autom. Syst.
,
26
(
2/3
), pp.
157
183
.
4.
Dong
,
W.
,
2002
, “
On Trajectory and Force Tracking Control of Constrained Mobile Manipulators With Parameter Uncertainty
,”
Automatica
,
38
(
9
), pp.
1475
1484
.
5.
Cho
,
H. C.
,
Fadali
,
S.
, and
Lee
,
K. S.
,
2010
, “
Adaptive Position and Trajectory Control of Autonomous Mobile Robot Systems With Random Friction
,”
IET Control Theory Appl.
,
12
(
4
), pp.
2733
2742
.
6.
Boukattaya
,
M.
,
Damak
,
T.
, and
Jallouli
,
M.
,
2011
, “
Robust Adaptive Control for Mobile Manipulators
,”
Int. J. Autom. Comput.
,
8
(
1
), pp.
8
13
.
7.
Li
,
T. H. S.
, and
Huang
,
Y. C.
,
2010
, “
MIMO Adaptive Fuzzy Terminal Sliding-Mode Controller for Robotic Manipulators
,”
Inf. Sci.
,
180
(
23
), pp.
4641
4660
.
8.
Gao
,
F. Z.
,
Yuan
,
F. S.
, and
Yao
,
H. J.
,
2010
, “
Robust Adaptive Control for Nonholonomic Systems With Nonlinear Parameterization
,”
Nonlinear Anal.: Real World Appl.
,
11
(
4
), pp.
3242
3250
.
9.
Yamamoto
,
Y.
, and
Yun
,
X.
,
1996
, “
Effect of Dynamic Interaction on Coordinated Control of Mobile Manipulators
,”
IEEE Trans. Rob. Autom.
,
12
(
5
), pp.
816
824
.
10.
Padopoulos
,
E.
, and
Poulakakis
,
J.
,
2000
, “
Planning and Model Based Control for Mobile Manipulators
,”
IEEE/RSJ Conference on Robots and Systems
(
IROS
), Takamatsu, Japan, Oct. 31–Nov 5, pp.
1810
1815
.
11.
Liu
,
G.
,
2001
, “
Control of Robotic Manipulators With Consideration of Actuator Performance Degradation and Failures
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, South Korea, May 21–26, pp.
2566
2571
.
12.
Berghuis
,
H.
,
Ortega
,
R.
, and
Nijmeijer
,
H.
,
1993
, “
A Robust Adaptive Robot Controller
,”
IEEE Trans. Rob. Autom.
,
9
(
6
), pp.
825
830
.
13.
Islam
,
S.
, and
Liu
,
X.
,
2011
, “
Robust Adaptive Fuzzy Output Feedback Control System Foe Robot Manipulators
,”
IEEE Trans. Mechatronics
,
16
(
2
), pp.
288
296
.
14.
Chang
,
Y. C.
, and
Chen
,
B. S.
,
2009
, “
Robust Tracking Design for Both Holonomic and Nonholonomic Constrained Mechanical Systems: Adaptive Fuzzy Approach
,”
IEEE Trans. Fuzzy Syst.
,
8
(
1
), pp.
46
66
.
15.
Liu
,
G.
, and
Glodenberg
,
A.
,
1997
, “
Robust Control of Robot Manipulators Based on Dynamics Decomposition
,”
IEEE Trans. Rob. Autom.
,
13
(
5
), pp.
783
789
.
16.
Hua
,
G.
,
Guan
,
X.
, and
Duan
,
G.
,
2004
, “
Variable Structure Adaptive Fuzzy Control for a Class of Nonlinear Time Delay Systems
,”
Fuzzy Sets Syst.
,
148
(
3
), pp.
453
468
.
17.
Yi
,
S. Y.
, and
Chung
,
M. J.
,
1997
, “
A Robust Fuzzy Logic Controller for Robot Manipulators With Uncertainties
,”
IEEE Trans. Syst., Man, Cybern.,-Part B
,
27
(
4
), pp.
706
713
.
18.
Aloui
,
S.
,
Pagès
,
O.
,
El Hajjaji
,
A.
,
Chaari
,
A.
, and
Koubaa
,
Y.
,
2011
, “
Improved Fuzzy Sliding Mode Control for a Class of MIMO Nonlinear Uncertain and Perturbed Systems
,”
Apply Soft Comput.
,
11
(
1
), pp.
820
826
.
19.
Li
,
Z.
,
Chen
,
W.
, and
Luo
,
J.
,
2008
, “
Adaptive Compliant Force-Motion Control of Coordinate Nonholonomic Mobile Manipulators Interacting With Unknown Non-Rigid Environment
,”
Neuro Comput.
,
7
(
10
), pp.
1330
1344
.
20.
Ata
,
A. A.
,
2010
, “
Dynamic Modeling and Numerical Simulation of a Non-Holonomic Mobile Manipulator
,”
Int. J. Mech. Mater. Des.
,
6
(
3
), pp.
209
216
.
21.
Li
,
Z.
,
Ge
,
S. S.
,
Adams
,
M.
, and
Wijesoma
,
W. S.
,
2008
, “
Robust Adaptive Control of Uncertain Force/Motion Constrained Nonholonomic Mobile Manipulators
,”
Automatica
,
44
(
3
), pp.
776
784
.
22.
Ryu
,
J.-C.
, and
Agrawal
,
K.
,
2010
, “
Planning and Control of Under-Actuated Mobile Manipulators Using Differential Flatness
,”
Auton. Rob.
,
29
(
1
), pp.
35
52
.
23.
Lin
,
S.
, and
Goldenberg
,
A. A.
,
2001
, “
Neural-Network Control of Mobile Manipulators
,”
IEEE Trans. Neural Networks
,
12
(
5
), pp.
1121
1133
.
24.
Cheng
,
L.
,
Hou
,
Z. G.
, and
Tan
,
M.
,
2009
, “
Adaptive Neural Network Tracking Control for Manipulators With Uncertain Kinematics, Dynamics and Actuator Model
,”
Automatica
,
45
(
10
), pp.
2312
2318
.
25.
Zuo
,
Y.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Liu
,
X.
,
Huang
,
L.
,
Wu
,
X.
, and
Wang
,
Z.
,
2011
, “
Intelligent Robust Tracking Control for Multi-Arm Mobile Manipulators Using a Fuzzy Cerebellar Model Articulation Controller Neural Network
,”
J. Mech. Eng. Sci.
,
225
(
5
), pp.
1131
1146
.
26.
Li
,
Z.
, and
Yang
,
C.
,
2007
, “
Neuro-Adaptive Compliant Forde/Motion Control of Uncertain Constrained Wheeled Mobile Manipulators
,”
Int. J. Rob. Autom.
,
22
(
3
), pp.
206
214
.
27.
Liang
,
X. W.
,
Huang
,
X. H.
, and
Wang
,
M.
,
2010
, “
Adaptive Task-Space Tracking Control of Robot Without Task-Space- and Joint-Space Velocity Measurement
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
733
742
.
28.
Cheah
,
C. C.
,
Liu
,
C.
, and
Slotine
,
E.
,
2006
, “
Adaptive Tracking Control for Robots With Unknown Kinematic and Dynamic Properties
,”
Int. J. Rob., Res.
,
25
(
3
), pp.
283
296
.
29.
Cheah
,
C. C.
,
Liu
,
C.
, and
Slotine
,
E.
,
2006
, “
Adaptive Tracking Control for Robots With Uncertainties in Kinematic, Dynamic, Actuator Models
,”
IEEE Trans. Autom. Control
,
51
(
6
), pp.
1024
1029
.
30.
Galicki
,
M.
,
2008
, “
An Adaptive Regulator of Robotic Manipulators in Task Space
,”
IEEE Trans. Autom. Control
,
53
(
4
), pp.
1058
1062
.
31.
Seraji
,
H.
,
1998
, “
A Unified Approach to Motion Control of Mobile Manipulators
,”
Int. J. Rob. Res.
,
17
(
2
), pp.
107
118
.
32.
Fruchard
,
M.
,
Morin
,
P.
, and
Samson
,
C.
,
2006
, “
A Framework for the Control of Nonholonomic Mobile Manipulators
,”
Int. J. Rob. Res.
,
25
(
8
), pp.
745
780
.
33.
Galicki
,
M.
,
2005
, “
Control-Based Solution to Inverse Kinematic for Mobile Manipulators Using Penalty Functions
,”
J. Intell. Rob. Syst.
,
42
(
3
), pp.
213
238
.
34.
Galicki
,
M.
,
2011
, “
Task Space Control of Mobile Manipulators
,”
Robotica
,
29
(
2
), pp.
221
232
.
35.
Boukattaya
,
M.
,
Damak
,
T.
, and
Jallouli
,
M.
,
2011
, “
Adaptive Robust Tracking Control for Mobile Manipulators in the Task-Space Under Uncertainties
,”
Int. J. Intell. Comput. Cybern.
,
4
(
1
), pp.
81
92
.
36.
Mazur
,
A.
,
2010
, “
Trajectory Tracking Control in Workspace-Defined Task for Nonholonomic Mobile Manipulators
,”
Robotica
,
28
(
1
), pp.
57
68
.
37.
Li
,
Z.
, and
Chen
,
W. D.
,
2008
, “
Adaptive Neural-Fuzzy Control of Uncertain Constrained Multiple Coordinated Nonholonomic Mobile Manipulators
,”
Eng. Appl. Artif. Intell.
,
21
(
7
), pp.
985
1000
.
38.
Zeinali
,
M.
, and
Notash
,
L.
,
2010
, “
Adaptive Sliding Mode Control With Uncertainty Estimator for Robot Manipulators
,”
Mech. Mach. Theory
,
45
(
1
), pp.
80
90
.
39.
Chuan
,
K. L.
,
2006
, “
Nonsingular Terminal Sliding Mode Control of Robot Manipulators Using Fuzzy Wavelet Networks
,”
IEEE Trans. Fuzzy Syst.
,
14
(
6
), pp.
849
859
.
40.
Boukattaya
,
M.
,
Jallouli
,
M.
, and
Damak
,
T.
,
2012
, “
On Trajectory Tracking Control for Nonholonomic Mobile Manipulators With Dynamic Uncertainties and External Torque Disturbances
,”
Rob. Auton. Syst.
,
60
(
12
), pp.
1640
1647
.
41.
Xu
,
D.
, and
Zhao
,
D. B.
,
2009
, “
Trajectory Tracking Control of Omnidirectional Wheeled Mobile Manipulators: Robust Neural Network-Based Sliding Mode Approach
,”
IEEE Trans. Syst., Man, Cybern.-Part B
,
39
(
3
), pp.
788
799
.
42.
Hwang
,
C.-L.
,
Chang
,
L.-J.
, and
Yu
,
Y.-S.
,
2007
, “
Network-Based Fuzzy Decentralized Sliding-Mode Control for Car-Like Mobile Robots
,”
IEEE Trans. Ind. Electron.
,
54
(
1
), pp.
574
585
.
43.
Soewandito
,
B.
,
Oetomo
,
D.
, and
Ang
,
H.
,
2011
, “
Neuro-Adaptive Motion Control With Velocity Observer in Operational Space Formulation
,”
Rob. Comput.-Integr. Manuf.
,
27
(
4
), pp.
829
842
.
44.
Bu
,
X.
,
Sun
,
W.
, and
Yu
,
S.
,
2015
, “
Adaptive Robust Control Based on RBF Neural Networks for Duct Cleaning Robot
,”
Int. J. Control, Autom., Syst.
,
13
(
2
), pp.
475
487
.
45.
Chen
,
C.-Y.
,
Li
,
T.-H. S.
,
Yeh
,
Y.-C.
, and
Chang
,
C.-C.
,
2009
, “
Design and Implementation of an Adaptive Sliding-Mode Dynamic Controller for Wheeled Mobile Robots
,”
Mechatronics
,
19
(
2
), pp.
156
166
.
46.
Wu
,
X.
,
Wang
,
Y.
, and
Dang
,
X.
,
2014
, “
Robust Adaptive Sliding-Mode Control of Condenser-Cleaning Mobile Manipulator Using Fuzzy Wavelet Neural Network
,”
Fuzzy Sets Syst.
,
235
, pp.
62
82
.
47.
Karray
,
A.
, and
Feki
,
M.
,
2014
, “
Adaptive and Sliding Mode Control of a Mobile Manipulator Actuated by DC Motors
,”
Int. J. Autom. Control
,
8
(
2
), pp.
173
190
.
48.
Ha
,
H. W.
,
Yoon
,
H. N.
,
Kim
,
Y. K.
,
Lee
,
D. H.
, and
Lee
,
J. M.
,
2015
, “
Model Prediction Control of Two Wheeled Mobile Manipulator
,”
International Conference on Intelligent Robotics and Applications
(
ICIRA
), Portsmouth, UK, Aug. 24–27, pp.
164
172
.
You do not currently have access to this content.