In this study, a measurement system is developed to analyze periodic external forces acting on a rotating machinery. The dynamics of a rotating machineries are influenced by various periodic external forces such as unbalanced forces, oil film forces at a journal bearing, and seal contact forces. The characteristics of periodic external forces are dependent on the rotating conditions, rotational speed, and rotating orbit of the rotating shaft. The proposed system employs an active magnetic bearing (AMB), which is implemented using an adaptive feed-forward cancellation (AFC). The use of AFC ensures that the proposed system can realize the desired harmonic orbit assuming actual operations under the periodic external forces. Moreover, AFC can measure the periodic external forces in real-time using an adaptive algorithm. The effectiveness of the proposed system is verified experimentally. Experimental results show that the control system can control the rotating shaft to an accuracy of micrometer order using the implemented AFC. The measurement error of the periodic external forces acting on the rotating system is less than 2%.

References

1.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
Hoboken, NJ
.
2.
Vance
,
J. M.
,
1988
,
Rotordynamics of Turbomachinery
,
Wiley
,
Hoboken, NJ
.
3.
Song
,
B.
,
Horiguchi
,
H.
,
Ma
,
Z.
, and
Tsujimoto
,
Y.
,
2010
, “
Rotordynamic Instabilities Caused by the Fluid Force Moments on the Backshroud of a Francis Turbine Runner
,”
Int. J. Fluid Mach. Syst.
,
3
(
1
), pp.
67
79
.
4.
Matsushita
,
O.
,
Takagi
,
M.
,
Kikuchi
,
K.
, and
Kaga
,
M.
,
1982
, “
Rotor Vibration Caused by External Excitation and Rub
,”
Second Workshop on Rotordynamics Instability Problems in High Performance Turbomachinery
,
Texas A&M University
,
College Station, TX
, pp.
105
129
.
5.
Silva
,
A.
,
Zarzo
,
A.
,
Munoz-Guijosa
,
J. M.
, and
Miniello
,
F.
,
2018
, “
Evaluation of the Continuous Wavelet Transform for Detection of Single-Point Rub in Aeroderivative Gas Turbines With Accelerometers
,”
J. Sens. (Basel)
,
18
(
6
), p.
E1931
.
6.
Hai-Jun
,
X.
, and
Jian
,
S.
,
2007
, “
Failure Analysis and Optimization Design of a Centrifuge Rotor
,”
Eng. Failure Anal.
,
14
(
1
), pp.
101
109
.
7.
Kanemor
,
Y. I.
, and
Iwatsubo
,
T.
,
1989
, “
Experimental Study of Dynamical Characteristics of a Long Annular Seal: Force and Moment Due to Conical Whirl Rotation
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
,
55
(
520
), pp.
2974
2981
(in Japanese).
8.
Andrés
,
L. S.
, and
Jeung
,
S. H.
,
2016
, “
Orbit-Model Force Coefficients for Fluid Film Bearings: A Step Beyond Linearization
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022502
.
9.
Franz
,
R.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1989
, “
The Rotordynamic Forces on a Centrifugal Pump Impeller in the Presence of Cavitation
,”
ASME J. Fluids Eng.
,
112
(
3
), pp.
264
271
.
10.
Yi
,
Y.
,
Qiu
,
Z.
, and
Han
,
Q.
,
2018
, “
The Effect of Time-Periodic Base Angular Motions Upon Dynamic Response of Asymmetric Rotor Systems
,”
J. Adv. Mech. Eng.
,
10
(
3
), pp.
1
12
.
11.
Kato
,
J.
,
Takagi
,
K.
, and
Inoue
,
T.
,
2016
, “
On the Stability Analysis of Active Magnetic Bearing With Parametric Uncertainty and Position Tracking Control
,”
ASME
Paper No. IMECE2016-66603.
12.
Kato
,
J.
,
Inoue
,
T.
,
Takagi
,
K.
, and
Yabui
,
S.
,
2018
, “
Nonlinear Analysis for Influence of Parametric Uncertainty on the Stability of Rotor System With Active Magnetic Bearing Using Feedback Linearization
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
7
), p.
071004
.
13.
Wassermann
,
J.
,
Schulz
,
A.
, and
Schneeberger
,
M.
,
2003
, “
Active Magnetic Bearings of High Reliability
,”
IEEE
International Conference on Industrial Technology,
Maribor, Slovenia
, Dec. 10–12, pp.
194
197
.
14.
JSME,
1995
,
The Basis and Application of the Magnetic Bearings
,
Japan Society Mechanical Engineers
,
Tokyo, Japan
(in Japanese).
15.
Schweitzer
,
G.
,
Bleuler
,
H.
, and
Traxler
,
A.
,
1994
,
Active Magnetic Bearings
,
Hochschulverlag AG an Der ETH
,
Zurich, Switzerland
.
16.
IEEJ
,
1993
,
Magnetic Levitation and Magnetic Bearings
,
Japan Society of Mechanical Engineers
,
Tokyo, Japan
(in Japanese).
17.
Bodson
,
M.
,
Sacks
,
A.
, and
Khosla
,
P.
,
1994
, “
Harmonic Generation in Adaptive Feedforward Cancellation Schemes
,”
IEEE Trans. Autom. Control
,
39
(
9
), pp.
1939
1944
.
18.
Messner
,
W.
, and
Bodson
,
M.
,
1994
, “
Design of Adaptive Feedforward Controllers Using Internal Model Equivalence
,” American Control Conference (
ACC
),
Baltimore, MD
, June 29–July 1, pp.
1619
1623
.
19.
Hattori
,
S.
,
Ishida
,
M.
, and
Hori
,
T.
,
2000
, “
Suppression Control Method of Torque Vibration for Brushless DC Motor Utilizing Repetitive Control With Fourier Transform
,”
Sixth International Workshop on Advanced Motion Control
,
Nagoya, Japan
, Mar. 30–Apr. 1, pp.
427
432
.
20.
Yabui
,
S.
, and
Inoue
,
T.
,
2019
, “
Development of Optimal Controller Design Method to Compensate for Vibrations Caused by Unbalanced Force in Rotor System Based on Nyquist Diagram
,”
J. Vib. Control
,
25
(
4
), pp.
793
805
.
21.
Inoue
,
T.
,
Liu
,
J.
,
Ishida
,
Y.
, and
Yoshimura
,
Y.
,
2009
, “
Vibration Control and Unbalance Estimation of a Nonlinear Rotor System Using Disturbance Observer
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
031010
.
22.
Noshadi
,
A.
,
Shi
,
J.
,
Lee
,
W. S.
,
Shi
,
P.
, and
Kalam
,
A.
,
2015
, “
Robust Control of an Active Magnetic Bearing System Using H∞ and Disturbance Observer-Based Control
,”
J. Vib. Control
,
23
(
11
), pp.
1857
1870
.
23.
Lindlau
,
D. J.
, and
Knospe
,
R. C.
,
2002
, “
Feedback Linearization of an Active Magnetic Bearing With Voltage Control
,”
IEEE Trans. Control Systems Technol.
,
10
(
1
), pp.
21
31
.
24.
Chen
,
M.
, and
Knospe
,
C. R.
,
2005
, “
Feedback Linearization of Active Magnetic Bearings: Current-Mode Implementation
,”
IEEE/ASME Trans. Mechatronics
,
10
(
6
), pp.
632
639
.
25.
Jerry
,
R.
, and
Pei
,
J.
,
2015
, “
Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach
,” NASA Langley Research Center, Hampton, VA, Report No.
NF1676 L-17871
.
26.
Yabui
,
S.
,
Okuyama
,
A.
,
Kobayashi
,
M.
, and
Atsumi
,
T.
,
2012
, “
Optimization of Adaptive Feedforward Repeatable Run-Out Cancellation for Positioning Control System of Hard Disk Drives
,”
Microsyst. Technol.
,
18
(
9–10
), pp.
1703
1709
.
27.
Yabui
,
S.
,
Okuyama
,
A.
,
Atsumi
,
T.
, and
Odai
,
M.
,
2013
, “
Development of Optimized Adaptive Feed-Forward Cancellation With Damping Function for Head Positioning System in Hard Disk Drives
,”
Adv. Mech. Des., Syst., Manuf.
,
7
(
1
), pp.
39
51
.
28.
Zhai
,
L. M.
,
Luo
,
Y. Y.
, and
Wang
,
Z. W.
,
2015
, “
Study About the Influence of Cavitation on the Dynamic Characteristics for the Sliding Bearing
,”
Mater. Sci. Eng.
,
72
, p.
042046
.
29.
Doyle
,
J. C.
,
Francis
,
B. A.
, and
Tannenbaum
,
A. R.
,
1992
,
Feedback Control Theory
,
Dover Publications
,
Mineola, NY
.
You do not currently have access to this content.