The line-of-sight (LOS) kinematics and dynamics of a mirror-stabilized platform are derived using the virtual mass stabilization method. Accounting for the coupled and nonlinear kinematics and dynamics, the uncertainty of external disturbances, and the actuator input saturation in the mirror-stabilized platform, a modified adaptive robust control (ARC) scheme is proposed based on the command filtered method and the extended state observer (ESO). The command-filtered approach is used to ensure the stability and tracking performance of the adaptive control system under the input saturation. In the proposed scheme, the ESO is designed to observe the modeling error and unknown external disturbances. The stability of the control system is proved using the Lyapunov method. Simulation results and experimental results proved that the proposed control scheme can effectively reduce the occurrence of input saturation, attenuate the effect of unknown disturbances, and improve the position tracking accuracy.

References

1.
Hilkert
,
J. M.
,
2008
, “
Inertially Stabilized Platform Technology
,”
IEEE Control Syst. Mag.
,
28
(
1
), pp.
26
46
.
2.
Michael
,
K. M.
,
2008
, “
Inertially Stabilized Platforms for Optical Imaging Systems
,”
IEEE Control Syst. Mag.
,
28
(
1
), pp.
47
64
.
3.
Francisco
,
R.
,
Manuel
,
G.
,
Francisco
,
G.
, and
Manuel
,
V.
,
2010
, “
Application of Position and Inertial-Rate Control to a 2-DOF Gyroscopic Platform
,”
Rob. Comput.-Integr. Manuf.
,
26
(
4
), pp.
344
353
.
4.
Hilkert
,
J. M.
, and
David
,
A.
,
1990
, “
Adaptive Control System Techniques Applied to Inertial Stabilization Systems
,”
Proc. SPIE
,
1304
, pp.
190
206
.
5.
Moorty
,
J.
,
Marathe
,
R.
, and
Sule
,
V. R.
,
2002
, “
H∞ Control Law for Line-of-Sight Stabilization Far Mobile Land Vehicles
,”
Opt. Eng.
,
41
(
11
), pp.
2935
2944
.
6.
Yao
,
B.
, and
Jiang
,
C.
,
2010
, “
Advanced Motion Control: From Classical PID to Nonlinear Adaptive Robust Control
,”
11th International Workshop on Advanced Motion Control
(
AMC
), Nagaoka, Japan, Mar. 21–24, pp.
815
829
7.
Gayaka
,
S.
, and
Yao
,
B.
,
2011
, “
Accommodation of Unknown Actuator Faults Using Output Feedback Based Adaptive Robust Control
,”
Int. J. Adapt. Control Signal Process
,
25
(
11
), pp.
965
982
.
8.
Chen
,
Z.
,
Yao
,
B.
, and
Wang
,
Q.
,
2015
, “
μ-Synthesis-Based Adaptive Robust Control of Linear Motor Driven Stages With High-Frequency Dynamics: A Case Study With Comparative Experiments
,”
IEEE/ASME Trans. Mechatronics
,
20
(
3
), pp.
1482
1490
.
9.
Mohanty
,
A.
, and
Yao
,
B.
,
2011
, “
Indirect Adaptive Robust Control of Hydraulic Manipulators With Accurate Parameter Estimates
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
567
575
.
10.
Chen
,
Z.
,
Yao
,
B.
, and
Wang
,
Q.
,
2013
, “
Accurate Motion Control of Linear Motors With Adaptive Robust Compensation of Nonlinear Electromagnetic Field Effect
,”
IEEE/ASME Trans. Mechatronics
,
18
(
3
), pp.
1122
1129
.
11.
Lu
,
L.
,
Yao
,
B.
,
Wang
,
Q.
, and Chen, Z.,
2008
, “
Adaptive Robust Control of Linear Motor Systems With Dynamic Friction Compensation Using Modified LuGre Model
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Xian, China, July 2–5, pp.
961
966
.
12.
Yao
,
B.
,
Hu
,
C.
,
Lu
,
L.
, and Wang, Q.,
2011
, “
Adaptive Robust Precision Motion Control of a High-Speed Industrial Gantry With Cogging Force Compensations
,”
IEEE Trans. Control Syst. Technol.
,
19
(
5
), pp.
1149
1159
.
13.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron
,
56
(
3
), pp.
900
906
.
14.
Zheng
,
Q.
,
Dong
,
L.
,
Lee
,
D. H.
, and
Gao
,
Z.
,
2009
, “
Active Disturbance Rejection Control and Implementation for MEMS Gyroscopes
,”
IEEE Trans. Control Syst Technol.
,
17
(
6
), pp.
1432
1438
.
15.
Zheng
,
Q.
,
Gao
,
L. Q.
, and
Gao
,
Z.
,
2012
, “
On Validation of Extended State Observer Through Analysis and Experimentation
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
2
), p.
024505
.
16.
Guo
,
B. Z.
, and
Zhao
,
Z. L.
,
2011
, “
On the Convergence of an Extended State Observer for Nonlinear System With Uncertainty
,”
Syst. Control Lett.
,
60
(
6
), pp.
420
430
.
17.
Gao
,
Z.
,
2003
, “
Scaling and Bandwidth-Parameterization Based Controller Tuning
,”
American Control Conference
(
ACC
), Denver, CO, June 4–6, pp.
4989
4996
.
18.
Qin
,
W.
,
Liu
,
Z.
, and
Chen
,
Z.
,
2014
, “
Formation Control for Nonlinear Multi-Agent Systems With Linear Extended State Observer
,”
IEEE/CAA J. Autom. Sin.
,
1
(
2
), pp.
171
179
.
19.
Xing
,
H.
,
Zhong
,
X.
, and
Li
,
J.
,
2015
, “
Linear Extended State Observer Based Back-Stepping Control for Uncertain SISO Nonlinear Systems
,”
Int. J. Innovative Comput. Inf. Control
,
11
(
4
), pp.
1411
1419
.
20.
Yang
,
M.
, Chen, D., Song-Yan, W., and Tao, C.,
2015
, “
Linear Extended State Observer Based on Finite-Time Output Feedback
,”
Acta Automatica Sin.
,
41
(
1
), pp.
59
66
.
21.
Yao
,
J.
, and
Deng
,
W.
,
2017
, “
Active Disturbance Rejection Adaptive Control of Hydraulic Servo Systems
,”
IEEE Trans. Ind. Electron.
,
64
(
10
), pp.
8023
8032
.
22.
Yao
,
J.
, and
Deng
,
W.
,
2017
, “
Active Disturbance Rejection Adaptive Control of Uncertain Nonlinear Systems: Theory and Application
,”
Nonlinear Dyn.
,
89
(3), pp. 1611–1624.
23.
Hong
,
Y.
, and
Yao
,
B.
,
2007
, “
A Globally Stable High-Performance Adaptive Robust Control Algorithm With Input Saturation for Precision Motion Control of Linear Motor Drive Systems
,”
IEEE/ASME Trans. Mechatronics
,
12
(
2
), pp.
198
207
.
24.
Hong
,
Y.
, and
Yao
,
B.
,
2007
, “
A Globally Stable Saturated Desired Compensation Adaptive Robust Control for Linear Motor Systems With Comparative Experiments
,”
Automatica
,
43
(
10
), pp.
1840
1848
.
25.
Li
,
Z.
,
Chen
,
J.
,
Zhang
,
G.
, and Gan, M. G.,
2011
, “
Adaptive Robust Control for DC Motors With Input Saturation
,”
Control Theory Appl.
,
5
(
16
), pp.
1895
1905
.
26.
Farrell
,
J.
,
Polycarpou
,
M.
, and
Sharma
,
M.
,
2004
, “
On-Line Approximation Based Control of Uncertain Nonlinear Systems
,”
American Control Conference
(
ACC
), Boston, MA, June 30–July 2, pp.
2557
2562
.
27.
Farrell
,
J.
,
Sharma
,
M.
, and
Polycarpou
,
M.
,
2005
, “
Backstepping-Based Flight Control With Adaptive Function Approximation
,”
J. Guid., Control, Dyn.
,
28
(
6
), pp.
1089
1101
.
28.
Sonneveldt
,
L.
,
Chu
,
Q. P.
, and
Mulder
,
J. A.
,
2007
, “
Nonlinear Flight Control Design Using Constrained Adaptive Backstepping
,”
J. Guid., Control Dyn.
,
30
(
2
), pp.
322
336
.
29.
Hilkert
,
J. M.
,
2009
, “
Development of Mirror Stabilization Line-of-Sight Rate Equations for an Un-Conventional Sensor-to-Gimbal Orientation
,”
Proc. SPIE
,
7338
, pp.
1
12
.
30.
James
,
M.
, and
Royalty
,
B.
,
2009
, “
Line-of-Sight Kinematics for a Two-Axis Head Mirror: Equations for Predicting and Controlling Mirrored LOS Pointing
,”
Proc. SPIE
,
7338
, pp.
1
11
.
31.
Ekstrand
,
B.
,
2001
, “
Equations of Motion for a Two-Axes Gimbal System
,”
IEEE Trans. Aerosp. Electron. Syst.
,
37
(
3
), pp.
1084
1091
.
32.
Kori
,
D. K.
,
Kolhe
,
J. P.
, and
Talole
,
S. E.
,
2014
, “
Extended State Observer Based Robust Control of Wing Rock Motion
,”
Aerosp. Sci. Technol.
,
33
(
1
), pp.
107
117
.
33.
Yao
,
J.
,
Jiao
,
Z.
, and
Ma
,
D.
,
2014
, “
Adaptive Robust Control of DC Motors With Extended State Observer
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3630
3637
.
You do not currently have access to this content.