This paper presents a linear robust output reference trajectory tracking controller, addressed here as a flat filtering controller (FFC), for nonlinear differentially flat systems. Here, we illustrate the controller's performance, via digital computer simulations and, also, via laboratory experiments, carried out on a single link-direct current (DC) motor driven robot manipulator undergoing a reference trajectory tracking task. The proposed linear FFC only requires the output to be regulated of the composite system and none of the internal states of the resulting third-order nonlinear system. The controller is designed on the basis of a drastic simplification of the combined single link-DC motor dynamics to a, perturbed, third-order pure integration system. This demonstrates the robustness of the proposed scheme with respect to ignored nonlinear state-dependent, endogenous, disturbances and, also, to independent unstructured exogenous disturbances inevitable in an experimental setup. Simulation and experimental results, as well as comparisons with other controllers, are presented.

References

1.
Fliess
,
M.
,
Marquez
,
R.
,
Delaleau
,
E.
, and
Sira-Ramírez
,
H.
,
2002
, “
Correcteurs Proportionnels-Intégraux Généralisés
,”
ESAIM: Control, Optim. Calculus Var.
,
7
, pp.
23
41
.
2.
Becedas
,
J.
,
Payo
,
I.
, and
Feliu
,
V.
,
2011
, “
Two-Flexible-Fingers Gripper Force Feedback Control System for Its Application as End Effector on a 6-DOF Manipulator
,”
IEEE Trans. Rob.
,
27
(
3
), pp.
599
615
.
3.
Sira-Ramírez
,
H.
,
Luviano-Juárez
,
A.
,
Ramírez-Neria
,
M.
, and
Garrido-Moctezuma
,
R.
,
2016
, “
Flat Filtering: A Classical Approach to Robust Control of Nonlinear Systems
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
3844
3849
.
4.
Zurita-Bustamante
,
E.
,
Linares-Flores
,
J.
,
Guzmán-Ramírez
,
E.
, and
Sira-Ramírez
,
H.
,
2011
, “
A Comparison Between the GPI and PID Controllers for the Stabilization of a DC–DC Buck Converter: A Field Programmable Gate Array Implementation
,”
IEEE Trans. Ind. Electron.
,
58
(
11
), pp.
5251
5262
.
5.
Belmonte
,
L.
,
Morales
,
R.
,
Fernández-Caballero
,
A.
, and
Somolinos
,
J.
,
2016
, “
A Tandem Active Disturbance Rejection Control for a Laboratory Helicopter With Variable-Speed Rotors
,”
IEEE Trans. Ind. Electron.
,
63
(
10
), pp.
6395
6406
.
6.
Gao
,
Z.
,
2006
, “
Active Disturbance Rejection Control: A Paradigm Shift in Feedback Control System Design
,”
American Control Conference
(
ACC
), Minneapolis, MN, June 14–16, pp.
2399
2405
.
7.
Gao
,
Z.
,
2014
, “
On the Centrality of Disturbance Rejection in Automatic Control
,”
ISA Trans.
,
53
(
4
), pp.
850
857
.
8.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.
9.
Cortés-Romero
,
J.
,
Ramos
,
G.
, and
Coral-Enriquez
,
H.
,
2014
, “
Generalized Proportional Integral Control for Periodic Signals Under Active Disturbance Rejection Approach
,”
ISA Trans.
,
53
(
6
), pp.
1901
1909
.
10.
Fliess
,
M.
,
Marquez
,
R.
, and
Delaleau
,
E.
,
2000
, “
State Feedbacks Without Asymptotic Observers and Generalized PID Regulators
,”
Nonlinear Control in the Year 2000
,
Springer
,
London
.
11.
Juárez-Abad
,
J.
,
Linares-Flores
,
J.
,
Guzmán-Ramírez
,
E.
, and
Sira-Ramirez
,
H.
,
2014
, “
Generalized Proportional Integral Tracking Controller for a Single-Phase Multilevel Cascade Inverter: An Fpga Implementation
,”
IEEE Trans. Ind. Inf.
,
10
(
1
), pp.
256
266
.
12.
Guo
,
B.-Z.
, and
Zhao
,
Z.-L.
,
2013
, “
On Convergence of the Nonlinear Active Disturbance Rejection Control for Mimo Systems
,”
SIAM J. Control Optim.
,
51
(
2
), pp.
1727
1757
.
13.
Madoński
,
R.
, and
Herman
,
P.
,
2015
, “
Survey on Methods of Increasing the Efficiency of Extended State Disturbance Observers
,”
ISA Trans.
,
56
, pp.
18
27
.
14.
Qi
,
X.
,
Xia
,
J. L. Y.
, and
Gao
,
Z.
,
2017
, “
On the Robust Stability of Active Disturbance Rejection Control for Siso Systems
,”
Circuits, Syst. Signal Process.
,
36
(
1
), pp.
65
81
.
15.
Feng
,
H.
, and
Guo
,
B.-Z.
,
2017
, “
Active Disturbance Rejection Control: Old and New Results
,”
Annu. Rev. Control.
(in press).
16.
Guo
,
B.
, and
Zhao
,
Z.
,
2016
,
Active Disturbance Rejection Control for Nonlinear Systems: An Introduction
,
Wiley
,
Singapore
.
17.
Huang
,
Y.
,
Xue
,
W.
,
Gao
,
Z.
,
Sira-Ramirez
,
H.
,
Wu
,
D.
, and
Sun
,
M.
,
2014
, “
Active Disturbance Rejection Control: Methodology, Practice and Analysis
,”
33rd Chinese Control Conference
(
CCC
), Nanjing, China, July 28–30 pp.
1
5
.
18.
Huang
,
C.
, and
Sira-Ramírez
,
H.
,
2015
, “
Flatness-Based Active Disturbance Rejection Control for Linear Systems With Unknown Time-Varying Coefficients
,”
Int. J. Control
,
88
(
12
), pp.
2578
2587
.
19.
Zheng
,
Q.
, and
Gao
,
Z.
,
2010
, “
On Practical Applications of Active Disturbance Rejection Control
,”
29th Chinese Control Conference
(
CCC
), Beijing, China, July 29–31, pp.
6095
6100
.
20.
Zhao
,
S.
,
Sun
,
L.
,
Li
,
D.
, and
Gao
,
Z.
,
2014
, “
Tracking and Disturbance Rejection in Non-Minimum Phase Systems
,”
33rd Chinese Control Conference
(
CCC
), Nanjing, China, July 28–30, pp.
3834
3839
.
21.
Sira-Ramírez
,
H.
,
Hernández-Méndez
,
A.
,
Linares-Flores
,
J.
, and
Luviano-Juárez
,
A.
,
2016
, “
Robust Flat Filtering dsp Based Control of the Boost Converter
,”
Control Theory Technol.
,
14
(
3
), pp.
224
236
.
22.
Fliess
,
M.
,
Lévine
,
J.
,
Martin
,
P.
, and
Rouchon
,
P.
,
1995
, “
Flatness and Defect of Non-Linear Systems: Introductory Theory and Examples
,”
Int. J. Control
,
61
(
6
), pp.
1327
1361
.
23.
Sira-Ramírez
,
H.
, and
Agrawal
,
S. K.
,
2004
,
Differentially Flat Systems
,
Marcel Dekker
,
New York
.
24.
Fliess
,
M.
,
Sira-Ramirez
,
H.
, and
Marquez
,
R.
,
1998
, “
Regulation of Non-Minimum Phase Outputs: A Flatness Based Approach
,”
Perspectives in Control
,
Springer
,
London
, pp.
143
163
.
25.
Ryu
,
J.
,
Sangwan
,
V.
, and
Agrawal
,
S.
,
2010
, “
Differentially Flat Designs of Underactuated Mobile Manipulators
,”
ASME J. Dyn. Syst., Meas. Control
,
132
(
2
), p.
024502
.
26.
Van Nieuwstadt
,
M.
,
Rathinam
,
M.
, and
Murray
,
R.
,
1998
, “
Differential Flatness and Absolute Equivalence of Nonlinear Control Systems
,”
SIAM J. Control Optim.
,
36
(
4
), pp.
1225
1239
.
27.
Martin
,
P.
,
Murray
,
R.
, and
Rouchon
,
P.
,
2001
, “
Flat Systems, Equivalence and Feedback
,”
Advances in the Control of Nonlinear Systems
,
Springer
,
London
, pp.
5
32
.
28.
Martin
,
P.
,
Murray
,
R. M.
, and
Rouchon
,
P.
,
2001
, “
Flat Systems: Open Problems, Infinite Dimensional Extension, Symmetries and Catalog
,”
Advances in the Control of Nonlinear Systems
,
Springer
,
London
, pp.
33
57
.
29.
Fliess
,
M.
, and
Join
,
C.
,
2013
, “
Model-Free Control
,”
Int. J. Control
,
86
(
12
), pp.
2228
2252
.
30.
Madoński
,
R.
, and
Herman
,
P.
,
2012
, “
Model-Free Control or Active Disturbance Rejection Control? on Different Approaches for Attenuating the Perturbation
,”
20th Mediterranean Conference On Control & Automation
(
MED
), Barcelona, Spain, July 3–6, pp.
60
65
.
31.
Chen
,
C.
,
1995
,
Linear System Theory and Design
,
Oxford University Press
,
Oxford, UK
.
You do not currently have access to this content.