Developing a flywheel energy storage system (FESS) with permanent magnetic bearing (PMB) and spiral groove bearing (SGB) brings a great challenge to dynamic control for the rotor system. In this paper, a pendulum-tuned mass damper is developed for 100 kg-class FESS to suppress low-frequency vibration of the system; the dynamic model with four degrees-of-freedom is built for the FESS using Lagrange's theorem; mode characteristics, critical speeds, and unbalance responses of the system are analyzed via theory and experiment. A comparison between the theoretical results and the experiment ones shows that the pendulum-tuned mass damper is effective, the dynamic model is appropriate, and the FESS can run smoothly within the working speed range.

References

1.
Bakay
,
L.
,
Dubois
,
M.
,
Viarouge
,
P.
, and
Ruel
,
J.
,
2009
, “
Losses in an Optimized 8-Pole Radial AMB for Long Term Flywheel Energy Storage
,”
International Conference on Electrical Machines and Systems
(
ICEMS
), Tokyo, Japan, Nov. 15–18, pp.
1
6
.
2.
Bai
,
J. G.
,
Zhang
,
X. Z.
, and
Wang
,
L. M.
,
2012
, “
A Flywheel Energy Storage System With Active Magnetic Bearings
,”
Energy Procedia
,
16
(Pt. B), pp.
1124
1128
.
3.
Kailasan
,
A.
,
Dimond
,
T.
,
Allaire
,
P.
, and
Sheffler
,
D.
,
2015
, “
Design and Analysis of a Unique Energy Storage Flywheel System—An Integrated Flywheel, Motor/Generator, and Magnetic Bearing Configuration
,”
ASME J. Eng. Gas Turbine Power
,
137
(
4
), p.
042505
.
4.
Lee
,
K.
,
Kim
,
B.
,
Ko
,
J.
,
Jeong
,
S.
, and
Lee
,
S. S.
,
2007
, “
Advanced Design and Experiment of a Small-Sized Flywheel Energy Storage System Using a High-Temperature Superconductor Bearing
,”
Supercond. Sci. Technol.
,
20
(
7
), pp.
634
639
.
5.
Lee
,
H.
,
Jung
,
S.
,
Cho
,
Y.
,
Yoon
,
D.
, and
Jang
,
G.
,
2013
, “
Peak Power Reduction and Energy Efficiency Improvement With the Superconducting Flywheel Energy Storage in Electric Railway System
,”
Phys. C: Supercond.
,
494
, pp.
246
249
.
6.
Arai
,
Y.
,
Seino
,
H.
,
Yoshizawa
,
K.
, and
Nagashima
,
K.
,
2013
, “
Development of Superconducting Magnetic Bearing With Superconducting Coil and Bulk Superconductor for Flywheel Energy Storage System
,”
Phys. C: Supercond.
,
494
, pp.
250
254
.
7.
Murakami
,
K.
,
Komori
,
M.
,
Mitsuda
,
H.
, and
Inoue
,
A.
,
2007
, “
Design of an Energy Storage Flywheel System Using Permanent Magnet Bearing (PMB) and Superconducting Magnetic Bearing (SMB)
,”
Cryogenics
,
47
(
4
), pp.
272
277
.
8.
Mitsuda
,
H.
,
Inoue
,
A.
,
Nakaya
,
B.
, and
Komori
,
M.
,
2009
, “
Improvement of Energy Storage Flywheel System With SMB and PMB and Its Performances
,”
IEEE Trans. Appl. Supercond.
,
19
(
3
), pp.
2091
2094
.
9.
Jiang
,
S.
,
Wang
,
H.
, and
Wen
,
S.
,
2014
, “
Flywheel Energy Storage System With a Permanent Magnet Bearing and a Pair of Hybrid Ceramic Ball Bearings
,”
J. Mech. Sci. Technol.
,
28
(
12
), pp.
5043
5053
.
10.
Dai
,
X.
,
Shen
,
Z.
, and
Wei
,
H.
,
2001
, “
On the Vibration of Rotor-Bearing System With Squeeze Film Damper in an Energy Storage Flywheel
,”
Int. J. Mech. Sci.
,
43
(
11
), pp.
2525
2540
.
11.
Wang
,
H.
,
Jiang
,
S.
, and
Shen
,
Z.
,
2009
, “
The Dynamic Analysis of an Energy Storage Flywheel System With Hybrid Bearing Support
,”
ASME J. Vib. Acoust.
,
131
(
5
), p.
051006
.
12.
Dai
,
X.
,
Shen
,
Z.
, and
Wei
,
H.
,
2002
, “
Study on Whirl Modal Damping of Energy Storage Flywheel-Bearing System
,”
J. Vib. Eng. (In Chinese)
,
15
(
1
), pp.
98
101
.
13.
Jiang
,
S.
, and
Ju
,
L.
,
2006
, “
Study on Electromechanical Coupling Nonlinear Vibration of Flywheel Energy Storage System
,”
Sci. China Ser. E
,
49
(
1
), pp.
61
77
.
14.
Li
,
D.
, and
Lu
,
Q.
,
2004
,
Analysis of Experiments in Engineering Vibration
,
Tsinghua University Press
,
Beijing, China
, Chap. 9.
15.
Muszynska
,
A.
,
2005
,
Rotordynamics
, CRC Press, Boca Raton, FL, p.
145
.
You do not currently have access to this content.