This paper focuses on norm-optimal iterative learning control (NO-ILC) for single-input-single-output (SISO) linear time invariant (LTI) systems and presents an infinite time horizon approach for a frequency-dependent design of NO-ILC weighting filters. Because NO-ILC is a model-based learning algorithm, model uncertainty can degrade its performance; hence, ensuring robust monotonic convergence (RMC) against model uncertainty is important. This robustness, however, must be balanced against convergence speed (CS) and steady-state error (SSE). The weighting filter design approaches for NO-ILC in the literature provide limited design freedom to adjust this trade-off. Moreover, even though qualitative guidelines to adjust the trade-off exist, a quantitative characterization of the trade-off is not yet available. To address these two gaps, a frequency-dependent weighting filter design is proposed in this paper and the robustness, convergence speed, and steady-state error are analyzed in the frequency domain. An analytical expression characterizing the fundamental trade-off of NO-ILC with respect to robustness, convergence speed, and steady-state error at each frequency is presented. Compared to the state of the art, a frequency-dependent filter design gives increased freedom to adjust the trade-off between robustness, convergence speed, and steady-state error because it allows the design to meet different performance requirements at different frequencies. Simulation examples are given to confirm the analysis and demonstrate the utility of the developed filter design technique.

References

1.
Longman
,
R. W.
,
2000
, “
Iterative Learning Control and Repetitive Control for Engineering Practice
,”
Int. J. Control
,
73
(
10
), pp.
930
954
.
2.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control: A Learning-Based Method for High-Performance Tracking Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.
3.
Barton
,
K. L.
, and
Alleyne
,
A. G.
,
2008
, “
A Cross-Coupled Iterative Learning Control Design for Precision Motion Control
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1218
1231
.
4.
Gunnarsson
,
S.
, and
Norrlof
,
M.
,
2001
, “
On the Design of ILC Algorithms Using Optimization
,”
Automatica
,
37
(
12
), pp.
2011
2016
.
5.
Norrlof
,
M.
, and
Gunnarsson
,
S.
,
2002
, “
Time and Frequency Domain Convergence Properties in Iterative Learning Control
,”
Int. J. Control
,
75
(
14
), pp.
1114
1126
.
6.
Lee
,
K. S.
,
Kim
,
W. C.
, and
Lee
,
J. H.
,
1996
, “
Model-Based Iterative Learning Control With Quadratic Criterion for Linear Batch Process
,”
J. Inst. Control, Rob. Syst.
,
2
(3), pp. 148–157.http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JOJDCV_1996_v2n3_148
7.
Pan
,
Y.-J.
,
Marquez
,
H. J.
, and
Chen
,
T.
,
2006
, “
Sampled-Data Iterative Learning Control for a Class of Nonlinear Networked Systems
,”
American Control Conference
(
ACC
), Minneapolis, MN, June 14–16, pp.
3494
3499
.
8.
Ersal
,
T.
,
Brudnak
,
M.
,
Salvi
,
A.
,
Kim
,
Y.
,
Siegel
,
J. B.
, and
Stein
,
J. L.
,
2014
, “
An Iterative Learning Control Approach to Improving Fidelity in Internet-Distributed Hardware-in-the-Loop Simulation
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
6
), p.
061012
.
9.
Ge
,
X.
,
Brudnak
,
M. J.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2014
, “
A Norm Optimal Iterative Learning Control Framework Towards Internet-Distributed Hardware-in-the-Loop Simulation
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, pp.
3802
3807
.
10.
Harte
,
T. J.
,
Hatonen
,
J.
, and
Owens
,
D. H.
,
2005
, “
Discrete-Time Inverse Model-Based Iterative Learning Control: Stability, Monotonicity and Robustness
,”
Int. J. Control
,
78
(
8
), pp.
577
586
.
11.
De Roover
,
D.
, and
Bosgra
,
O. H.
,
2000
, “
Synthesis of Robust Multi-Variable Iterative Learning Controllers With Application to a Wafer Stage Motion System
,”
Int. J. Control
,
73
(
10
), pp.
968
979
.
12.
Lee
,
J. H.
,
Lee
,
K. S.
, and
Kim
,
W. C.
,
2000
, “
Model-Based Iterative Learning Control With a Quadratic Criterion for Time Varying Learning Linear Systems
,”
Automatica
,
36
(
5
), pp.
641
657
.
13.
Janssens
,
P.
,
Pipeleers
,
G.
, and
Swevers
,
J.
,
2013
, “
A Data-Driven Constrained Norm-Optimal Iterative Learning Control Framework for LTI Systems
,”
IEEE Trans. Control Syst. Technol.
,
21
(
2
), pp.
546
551
.
14.
Dijkstra
,
B. G.
, and
Bosgra
,
O. H.
,
2002
, “
Extrapolation of Optimal Lifted System ILC Solution, With Application to a Waferstage
,”
American Control Conference
(
ACC
), Anchorage, AK, May 8–10, pp.
2595
2600
.
15.
Amann
,
N.
,
Owens
,
D. H.
, and
Rogers
,
E.
,
1996
, “
Iterative Learning Control for Discrete-Time Systems With Exponential Rate of Convergence
,”
IEEE Proc. Control Theory Appl.
,
143
(
2
), pp.
217
224
.
16.
Ahn
,
H.-S.
,
Moore
,
K. L.
, and
Chen
,
Y.
,
2005
, “
Schur Stability Radius Bounds for Robust Iterative Learning Controller Design
,”
American Control Conference
(
ACC
), Portland, OR, June 8–10, pp.
178
183
.
17.
Ahn
,
H.-S.
,
Moore
,
K. L.
, and
Chen
,
Y.
,
2007
, “
Stability Analysis of Discrete-Time Iterative Learning Control Systems With Interval Uncertainty
,”
Automatica
,
43
(
5
), pp.
892
902
.
18.
Owens
,
D. H.
,
Hatonen
,
J. J.
, and
Delay
,
S.
,
2009
, “
Robust Monotone Gradient-Based Discrete-Time Iterative Learning Control
,”
Int. J. Rob. Nonlinear Control
,
19
(
2
), pp.
634
661
.
19.
Van De Wijdeven
,
J.
,
Donkers
,
T.
, and
Bosgra
,
O.
,
2009
, “
Iterative Learning Control for Uncertain Systems: Robust Monotonic Convergence Analysis
,”
Automatica
,
45
(
10
), pp.
2383
2391
.
20.
Donkers
,
T.
,
Van De Wijdeven
,
J.
, and
Bosgra
,
O.
,
2008
, “
Robustness Against Model Uncertainties of Norm Optimal Iterative Learning Control
,”
American Control Conference
(
ACC
), Seattle, WA, June 11–13, pp.
4561
4566
.
21.
Norrlof
,
M.
, and
Gunnarsson
,
S.
,
2005
, “
A Note on Causal and CITE Iterative Learning Control
,”
Automatica
,
41
(
2
), pp.
345
350
.
22.
Gorinevsky
,
D.
,
2002
, “
Loop Shaping for Iterative Control of Batch Processes
,”
IEEE Control Syst. Mag.
,
22
(
6
), pp.
55
65
.
23.
Bristow
,
D. A.
,
2008
, “
Weighting Matrix Design for Robust Monotonic Convergence in Norm Optimal Iterative Learning Control
,”
American Control Conference
(
ACC
), Seattle, WA, June 11–13, pp.
4554
4560
.
24.
Barton
,
K. L.
, and
Alleyne
,
A. G.
,
2011
, “
A Norm Optimal Approach to Time Varying ILC With Application to a Multi-Axis Robotic Testbed
,”
IEEE Trans. Control Syst. Technol.
,
19
(
1
), pp.
166
180
.
25.
Ge
,
X.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2017
, “
Frequency Domain Analysis of Robust Monotonic Convergence of Norm-Optimal Iterative Learning Control
,”
IEEE Trans. Control Syst. Technol.
,
PP
(99), pp. 1–15.
26.
Ge
,
X.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2016
, “
A Frequency Domain Approach for Designing Filters for Norm-Optimal Iterative Learning Control and Its Fundamental Tradeoff Between Robustness, Convergence Speed and Steady State Error
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp. 384–391.
27.
Ge
,
X.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2016
, “
Optimization Based Weighting Matrices Design for Norm Optimal Iterative Learning Control
,”
ASME
Paper No. DSCC2016-9758.
You do not currently have access to this content.