This paper presents a model-based blind system identification approach to estimation of central aortic blood pressure (BP) waveform from noninvasive diametric circulatory signals. First, we developed a mathematical model to reproduce the relationship between central aortic BP waveform and a class of noninvasive circulatory signals at diametric locations by combining models to represent wave propagation in the artery, arterial pressure–volume relationship, and mechanics of the measurement instrument. Second, we formulated the problem of estimating central aortic BP waveform from noninvasive diametric circulatory signals into a blind system identification problem. Third, we performed identifiability analysis to show that the mathematical model could be identified and its parameters determined up to an unknown scale. Finally, we illustrated the feasibility of the approach by applying it to estimate central aortic BP waveform from two diametric pulse volume recording (PVR) signals. Experimental results from ten human subjects showed that the proposed approach could estimate central aortic BP waveform accurately: the average root-mean-squared error (RMSE) associated with the central aortic BP waveform was 4.1 mm Hg (amounting to 4.5% of the underlying mean BP) while the average errors associated with central aortic systolic pressure (SP) and pulse pressure (PP) were 2.4 mm Hg and 2.0 mm Hg (amounting to 2.5% and 2.1% of the underlying mean BP). The proposed approach may contribute to the improved monitoring of cardiovascular (CV) health by enabling estimation of central aortic BP waveform from conveniently measurable diametric circulatory signals.

References

1.
Roman
,
M. J.
,
Devereux
,
R. B.
,
Kizer
,
J. R.
,
Lee
,
E. T.
,
Galloway
,
J. M.
,
Ali
,
T.
,
Umans
,
J. G.
, and
Howard
,
B. V.
,
2007
, “
Central Pressure More Strongly Relates to Vascular Disease and Outcome Than Does Brachial Pressure: The Strong Heart Study
,”
Hypertension
,
50
(
1
), pp.
197
203
.
2.
Roman
,
M. J.
,
Okin
,
P. M.
,
Kizer
,
J. R.
,
Lee
,
E. T.
,
Howard
,
B. V.
, and
Devereux
,
R. B.
,
2010
, “
Relations of Central and Brachial Blood Pressure to Left Ventricular Hypertrophy and Geometry: The Strong Heart Study
,”
J. Hypertens.
,
28
(
2
), pp.
384
388
.
3.
Ferguson
,
J. M.
,
Minas
,
J.
,
Siapantas
,
S.
,
Komesaroff
,
P. A.
, and
Sudhir
,
K.
,
2008
, “
Effects of a Fixed-Dose ACE Inhibitor-Diuretic Combination on Ambulatory Blood Pressure and Arterial Properties in Isolated Systolic Hypertension
,”
J. Cardiovasc. Pharmacol.
,
51
(
6
), pp.
590
595
.
4.
Mahmud
,
A.
, and
Feely
,
J.
,
2008
, “
Beta-Blockers Reduce Aortic Stiffness in Hypertension But Nebivolol, Not Atenolol, Reduces Wave Reflection
,”
Am. J. Hypertens.
,
21
(
6
), pp.
663
667
.
5.
Williams
,
B.
,
Lacy
,
P. S.
,
Thom
,
S. M.
,
Cruickshank
,
K.
,
Stanton
,
A.
,
Collier
,
D.
,
Hughes
,
A. D.
,
Thurston
,
H.
, and
O'Rourke
,
M.
,
2006
, “
Differential Impact of Blood Pressure-Lowering Drugs on Central Aortic Pressure and Clinical Outcomes: Principal Results of the Conduit Artery Function Evaluation (CAFE) Study
,”
Circulation
,
113
(
9
), pp.
1213
1225
.
6.
Chen
,
C. H.
,
Nevo
,
E.
,
Fetics
,
B.
,
Pak
,
P. H.
,
Yin
,
F. C.
,
Maughan
,
W. L.
, and
Kass
,
D. A.
,
1997
, “
Estimation of Central Aortic Pressure Waveform by Mathematical Transformation of Radial Tonometry Pressure. Validation of Generalized Transfer Function
,”
Circulation
,
95
(
7
), pp.
1827
1836
.
7.
Nichols
,
W.
,
O'Rourke
,
M. F.
, and
Vlachopoulos
,
C.
, eds.,
2011
,
McDonald's Blood Flow in Arteries: Theoretical, Experimental, and Clinical Principles
,
CRC Press
, Boca Raton, FL.
8.
Karamanoglu
,
M.
,
O'Rourke
,
M. F.
,
Avolio
,
A. P.
, and
Kelly
,
R. P.
,
1993
, “
An Analysis of the Relationship Between Central Aortic and Peripheral Upper Limb Pressure Waves in Man
,”
Eur. Heart J.
,
14
(
2
), pp.
160
167
.
9.
Fetics
,
B.
,
Nevo
,
E.
,
Chen
,
C. H.
, and
Kass
,
D. A.
,
1999
, “
Parametric Model Derivation of Transfer Function for Non-invasive Estimation of Aortic Pressure by Radial Tonometry
,”
IEEE Trans. Biomed. Eng.
,
46
(
6
), pp.
698
706
.
10.
Gallagher
,
D.
,
Adji
,
A.
, and
O'Rourke
,
M. F.
,
2004
, “
Validation of the Transfer Function Technique for Generating Central From Peripheral Upper Limb Pressure Waveform
,”
Am. J. Hypertens.
,
17
(
11
), pp.
1059
1067
.
11.
Söderström
,
S.
,
Nyberg
,
G.
,
O'Rourke
,
M. F.
,
Sellgren
,
J.
, and
Pontén
,
J.
,
2002
, “
Can a Clinically Useful Aortic Pressure Wave Be Derived From a Radial Pressure Wave?
Br. J. Anaesth.
,
88
(
4
), pp.
481
488
.
12.
Hope
,
S. A.
,
Meredith
,
I. T.
, and
Cameron
,
J. D.
,
2008
, “
Arterial Transfer Functions and the Reconstruction of Central Aortic Waveforms: Myths, Controversies, and Misconceptions
,”
J. Hypertens.
,
26
(
1
), pp.
4
7
.
13.
Sugimachi
,
M.
,
Shishido
,
T.
,
Miyatake
,
K.
, and
Sunagawa
,
K.
,
2001
, “
A New Model-Based Method of Reconstructing Central Aortic Pressure From Peripheral Arterial Pressure
,”
Jpn. J. Physiol.
,
51
(
2
), pp.
217
222
.
14.
Stok
,
W. J.
,
Westerhof
,
B. E.
, and
Karemaker
,
J. M.
,
2006
, “
Changes in Finger-Aorta Pressure Transfer Function During and After Exercise
,”
J. Appl. Physiol.
,
101
(
4
), pp.
1207
1214
.
15.
Stok
,
W. J.
,
Westerhof
,
B. E.
,
Guelen
,
I.
, and
Karemaker
,
J. M.
,
2011
, “
Aortic Pressure Wave Reconstruction During Exercise Is Improved by Adaptive Filtering: A Pilot Study
,”
Med. Biol. Eng. Comput.
,
49
(
8
), pp.
909
916
.
16.
McCombie
,
D. B.
,
Reisner
,
A. T.
, and
Asada
,
H. H.
,
2005
, “
Laguerre-Model Blind System Identification: Cardiovascular Dynamics Estimated From Multiple Peripheral Circulatory Signals
,”
IEEE Trans. Biomed. Eng.
,
52
(
11
), pp.
1889
1901
.
17.
Hahn
,
J.
,
Reisner
,
A. T.
, and
Asada
,
H. H.
,
2009
, “
Blind Identification of Two-Channel IIR Systems With Application to Central Cardiovascular Monitoring
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
5
), p.
051009
.
18.
Hahn
,
J.
,
Reisner
,
A. T.
, and
Harry Asada
,
H.
,
2009
, “
Modeling and 2-Sensor Blind Identification of Human Cardiovascular System
,”
Control Eng. Pract.
,
17
(
11
), pp.
1318
1328
.
19.
Swamy
,
G.
,
Ling
,
Q.
,
Li
,
T.
, and
Mukkamala
,
R.
,
2007
, “
Blind Identification of the Aortic Pressure Waveform From Multiple Peripheral Artery Pressure Waveforms
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
292
(
5
), pp.
H2257
H2264
.
20.
Fazeli
,
N.
,
Kim
,
C.
,
Rashedi
,
M.
,
Chappell
,
A.
,
Wang
,
S.
,
MacArthur
,
R.
,
McMurtry
,
M. S.
,
Finegan
,
B.
, and
Hahn
,
J.
,
2014
, “
Subject-Specific Estimation of Central Aortic Blood Pressure via System Identification: Preliminary In-Human Experimental Study
,”
Med. Biol. Eng. Comput.
,
52
(
10
), pp.
895
904
.
21.
Abutaleb
,
A. S.
,
Waheed
,
M. E.
, and
Elhamy
,
N. M.
,
2010
, “
Multichannel Blind Deconvolution Using the Stochastic Calculus for the Estimation of the Central Arterial Pressure
,”
Math. Probl. Eng.
,
2010
, pp.
1
22
.
22.
Abutaleb
,
A. S.
,
El-Sayed Waheed
,
M.
, and
Elhamy
,
N. M.
,
2010
, “
Blind Deconvolution of the Aortic Pressure Waveform Using the Malliavin Calculus
,”
Math. Probl. Eng.
,
2010
, p.
102581
.
23.
Zhang
,
Y.
, and
Asada
,
H. H.
,
2004
, “
Blind System Identification of Noncoprime Multichannel Systems and Its Application to Noninvasive Cardiovascular Monitoring
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(
4
), pp.
834
847
.
24.
Drzewiecki
,
G.
,
Bansal
,
V.
,
Karam
,
E.
,
Hood
,
R.
, and
Apple
,
H.
,
1993
, “
Mechanics of the Occlusive Arm Cuff and Its Application as a Volume Sensor
,”
IEEE Trans. Biomed. Eng.
,
40
(
7
), pp.
704
708
.
25.
Yu
,
W.
,
Chuang
,
S.
,
Lin
,
Y.
, and
Chen
,
C.
,
2008
, “
Brachial-Ankle versus Carotid-Femoral Pulse Wave Velocity as a Determinant of Cardiovascular Structure and Function
,”
J. Hum. Hypertens.
,
22
(
1
), pp.
24
31
.
26.
Zhang
,
G.
,
Hahn
,
J.
, and
Mukkamala
,
R.
,
2011
, “
Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics
,”
Front. Physiol.
,
2
,
p. 72
.
27.
Nise
,
N. S.
,
2015
,
Control Systems Engineering
, 7th Edition,
Wiley Global Education
, Pomona, CA.
28.
Rashedi
,
M.
,
Fazeli
,
N.
,
Chappell
,
A.
,
Wang
,
S.
,
Macarthur
,
R.
,
Sean McMurtry
,
M.
,
Finegan
,
B. A.
, and
Hahn
,
J.
,
2013
, “
Comparative Study on Tube-Load Modeling of Arterial Hemodynamics in Humans.
,”
ASME J. Biomech. Eng.
,
135
(
3
), p.
31005
.
29.
Abdollahzade
,
M.
,
Kim
,
C.
,
Fazeli
,
N.
,
Finegan
,
B. A.
,
Sean McMurtry
,
M.
, and
Hahn
,
J.
,
2014
, “
Data-Driven Lossy Tube-Load Modeling of Arterial Tree: In-Human Study
,”
ASME J. Biomech. Eng.
,
136
(
10
), p.
101011
.
30.
Drzewiecki
,
G.
,
Hood
,
R.
, and
Apple
,
H.
,
1994
, “
Theory of the Oscillometric Maximum and the Systolic and Diastolic Detection Ratios
,”
Ann. Biomed. Eng.
,
22
(
1
), pp.
88
96
.
31.
Askey
,
J. M.
,
1974
, “
The Auscultatory Gap in Sphygmomanometry
,”
Ann. Intern. Med.
,
80
(
1
),
p. 94
.
32.
Green
,
M.
,
Paulus
,
D. A.
,
Roan
,
V. P.
, and
van der Aa
,
J.
,
1984
, “
Comparison Between Oscillometric and Invasive Blood Pressure Monitoring During Cardiac Surgery
,”
Int. J. Clin. Monit. Comput.
,
1
(
1
), pp.
21
26
.
33.
Bur
,
A.
,
Hirschl
,
M. M.
,
Herkner
,
H.
,
Oschatz
,
E.
,
Kofler
,
J.
,
Woisetschläger
,
C.
, and
Laggner
,
A. N.
,
2000
, “
Accuracy of Oscillometric Blood Pressure Measurement According to the Relation Between Cuff Size and Upper-Arm Circumference in Critically Ill Patients
,”
Crit. Care Med.
,
28
(
2
), pp.
371
376
.
34.
Ribezzo
,
S.
,
Spina
,
E.
,
Di Bartolomeo
,
S.
, and
Sanson
,
G.
,
2014
, “
Non-invasive Techniques for Blood Pressure Measurement Are Not a Reliable Alternative to Direct Measurement: A Randomized Crossover Trial in ICU
,”
Sci. World J.
,
2014
, p.
353628
.
35.
Shangguan
,
Q.
,
Wu
,
Y.
,
Xu
,
J.
,
Su
,
H.
,
Li
,
J.
,
Hong
,
K.
, and
Cheng
,
X.
,
2015
, “
The Impact of Arm Circumference on Non-invasive Oscillometric Blood Pressure Referenced With Intra-Aortic Blood Pressure
,”
Blood Pressure Monit.
,
20
(
6
), pp.
316
319
.
36.
Nelson
,
M. R.
,
Stepanek
,
J.
,
Cevette
,
M.
,
Covalciuc
,
M.
,
Hurst
,
R. T.
, and
Tajik
,
A. J.
,
2010
, “
Non-invasive Measurement of Central Vascular Pressures With Arterial Tonometry: Clinical Revival of the Pulse Pressure Waveform?
Mayo Clin. Proc.
,
85
(
5
), pp.
460
472
.
You do not currently have access to this content.