Myoelectric classification has been widely studied for controlling prosthetic devices and human computer interface (HCI). However, it is still not robust due to external conditions: limb position changes, electrode shifts, and skin condition changes. These issues compromise the reliability of pattern recognition techniques in myoelectric systems. In order to increase the reliability in the limb position effect when a limb position is changed from the position in which the system is trained, this paper proposes a myoelectric system using dynamic motions. Dynamic time warping (DTW) technique was used for the alignment of two different time-length motions, and correlation coefficients were then calculated as a similarity metric to classify dynamic motions. On the other hand, Fisher's linear discriminant analysis was applied on static motions for the purpose of dimensionality reduction and Naïve Bayesian classifier for classifying the motions. To estimate the robustness to the limb position effect, static and dynamic motions were collected at four different limb positions from eight human subjects. The statistical analysis, t-test (p < 0.05), showed that, for all subjects, dynamic motions were more robust to the limb position effect than static motions when training and validation sets were extracted from different limb positions with the best classification accuracy of 97.59% and 3.54% standard deviation (SD) for dynamic motions compared with 71.85% with 12.62% SD for static motions.

References

1.
Farina
,
D.
,
Holobar
,
A.
,
Merletti
,
R.
, and
Enoka
,
R. M.
,
2010
, “
Decoding the Neural Drive to Muscles From the Surface Electromyogram
,”
Clin. Neurophysiol.
,
121
(
10
), pp.
1616
1623
.
2.
Ning
,
J.
,
Dosen
,
S.
,
Muller
,
K.
, and
Farina
,
D.
,
2012
, “
Myoelectric Control of Artificial Limbs; Is There a Need to Change Focus?
,”
IEEE Signal Process. Mag.
,
29
(
5
), pp.
152
150
.
3.
Oskoei
,
M. A.
, and
Hu
,
H. S.
,
2007
, “
Myoelectric Control Systems-A Survey
,”
Biomed. Signal Process. Control
,
2
(
4
), pp.
275
294
.
4.
Farina
,
D.
,
Ning
,
J.
,
Rehbaum
,
H.
,
Holobar
,
A.
,
Graimann
,
B.
,
Dietl
,
H.
, and
Aszmann
,
O. C.
,
2014
, “
The Extraction of Neural Information From the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and Challenges
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
4
), pp.
797
809
.
5.
Scheme
,
E.
,
Fougner
,
A.
,
Stavdahl
,
Ø.
,
Chan
,
A.
, and
Englehart
,
K.
,
2010
, “
Examining the Adverse Effects of Limb Position on Pattern Recognition Based Myoelectric Control
,”
32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Buenos Aires, Argentina, Aug. 31–Sept. 4, pp.
6337
6340
.
6.
Fougner
,
A.
,
Scheme
,
E.
,
Chan
,
A. D.
,
Englehart
,
K.
, and
Stavdahl
,
Ø.
,
2011
, “
Resolving the Limb Position Effect in Myoelectric Pattern Recognition
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
6
), pp.
644
651
.
7.
Geng
,
Y.
,
Zhou
,
P.
, and
Li
,
G.
,
2012
, “
Toward Attenuating the Impact of Arm Positions on Electromyography Pattern-Recognition Based Motion Classification in Transradial Amputees
,”
J. Neuroeng. Rehabil.
,
9
, p.
74
.
8.
Masters
,
M. R.
,
Smith
,
R. J.
,
Soares
,
A. B.
, and
Thakor
,
N. V.
,
2014
, “
Towards Better Understanding and Reducing the Effect of Limb Position on Myoelectric Upper-Limb Prostheses
,”
34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Chicago, IL, Aug. 26–30, pp.
2577
2580
.
9.
Khushaba
,
R. N.
,
Takruri
,
M.
,
Miro
,
J. V.
, and
Kodagoda
,
S.
,
2014
, “
Towards Limb Position Invariant Myoelectric Pattern Recognition Using Time-Dependent Spectral Features
,”
Neural Networks
,
55
, pp.
42
58
.
10.
Mitra
,
S.
, and
Acharya
,
T.
,
2007
, “
Gesture Recognition: A Survey
,”
IEEE Trans. Syst. Man Cybern. Part C
,
37
(
3
), pp.
311
324
.
11.
Konrad
,
P.
,
2005
, “
The ABC of EMG: A Practical Introduction to Kinesiological Electromyography
,” Noraxon USA, Inc., Scottsdale, AZ.
12.
Englehart
,
K.
, and
Hudgins
,
B.
,
2003
, “
A Robust, Real-Time Control Scheme for Multifunction Myoelectric Control
,”
IEEE Trans. Biomed. Eng.
,
50
(
7
), pp.
848
854
.
13.
Peerdeman
,
B.
,
Boere
,
D.
,
Witteveen
,
H.
,
in't Veld
,
R. H.
,
Hermens
,
H.
,
Stramigioli
,
S.
,
Rietman
,
H.
,
Veltink
,
P.
, and
Misra
,
S.
,
2011
, “
Myoelectric Forearm Prostheses: State of the Art From a User-Centered Perspective
,”
J. Rehabil. Res. Dev.
,
48
(
6
), pp.
719
737
.
14.
Young
,
A.
,
Hargrove
,
L.
, and
Kuiken
,
T.
,
2011
, “
The Effects of Electrode Size and Orientation on the Sensitivity of Myoelectric Pattern Recognition Systems to Electrode Shift
,”
IEEE Trans. Biomed. Eng.
,
58
(
9
), pp.
2537
2544
.
15.
Hargrove
,
L.
,
Englehart
,
K.
, and
Hudgins
,
B.
,
2008
, “
A Training Strategy to Reduce Classification Degradation Due to Electrode Displacements in Pattern Recognition Based Myoelectric Control
,”
Biomed. Signal Process. Control
,
3
(
2
), pp.
175
180
.
16.
He
,
J.
,
Zhang
,
D.
,
Sheng
,
X.
, and
Zhu
,
X.
,
2013
, “
Effects of Long-Term Myoelectric Signals on Pattern Recognition
,”
Intelligent Robotics and Applications
,
Springer
, Berlin/Heidelberg, pp.
396
404
.
17.
Kaufmann
,
P.
,
Englehart
,
K.
, and
Platzner
,
M.
,
2010
, “
Fluctuating EMG Signals: Investigating Long-Term Effects of Pattern Matching Algorithms
,” Annual International Conference of the
IEEE
Engineering in Medicine and Biology
, Buenos Aires, Argentina, Aug. 31–Sept. 4, pp.
6357
6360
.
18.
Amsuss
,
S.
,
Paredes
,
L. P.
,
Rudigkeit
,
N.
,
Graimann
,
B.
,
Herrmann
,
M. J.
, and
Farina
,
D.
,
2013
, “
Long Term Stability of Surface EMG Pattern Classification for Prosthetic Control
,”
35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Osaka, Japan, July 3–7, pp.
3622
3625
.
19.
Phinyomark
,
A.
,
Quaine
,
F.
,
Charbonnier
,
S.
,
Serviere
,
C.
,
Tarpin-Bernard
,
F.
, and
Laurillau
,
Y.
,
2013
, “
EMG Feature Evaluation for Improving Myoelectric Pattern Recognition Robustness
,”
Expert Syst. Appl.
,
40
(
12
), pp.
4832
4840
.
20.
Wan
,
B.
,
Xu
,
L.
,
Ren
,
Y.
,
Wang
,
L.
,
Qiu
,
S.
,
Liu
,
X.
,
Liu
,
X.
,
Qi
,
H.
,
Ming
,
D.
, and
Wang
,
W.
,
2010
, “
Study on Fatigue Feature From Forearm SEMG Signal Based on Wavelet Analysis
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Tianjin, China, Dec. 14–18, pp.
1229
1232
.
21.
Clancy
,
E.
,
Morin
,
E. L.
, and
Merletti
,
R.
,
2002
, “
Sampling, Noise-Reduction and Amplitude Estimation Issues in Surface Electromyography
,”
J. Electromyography Kinesiol.
,
12
(
1
), pp.
1
16
.
22.
Shin
,
S.
,
Langari
,
R.
, and
Tafreshi
,
R.
,
2014
, “
A Performance Comparison of EMG Classification Methods for Hand and Finger Motion
,”
ASME
Paper No. DSCC2014-5993.
23.
Kaiser
,
J. F.
,
1990
, “
On a Simple Algorithm to Calculate the 'Energy' of a Signal
,”
International Conference on Acoustics, Speech, and Signal Processing
(
ICASSP
), Albuquerque, NM, Apr. 3–6, pp.
381
384
.
24.
Kruskal
,
J. B.
, and
Liberman
,
M.
,
1983
, “
The Symmetric Time-Warping Problem: From Continuous to Discrete
,”
Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison
, D. Sankoff and J. B. Kruskal, eds.,
Addison-Wesley
,
Upper Saddle River, NJ
, pp. 125–162.
25.
Li
,
X.
,
Zhou
,
P.
, and
Aruin
,
A. S.
,
2007
, “
Teager–Kaiser Energy Operation of Surface EMG Improves Muscle Activity Onset Detection
,”
Ann. Biomed. Eng.
,
35
(
9
), pp.
1532
1538
.
26.
Solnik
,
S.
,
Rider
,
P.
,
Steinweg
,
K.
,
DeVita
,
P.
, and
Hortobágyi
,
T.
,
2010
, “
Teager–Kaiser Energy Operator Signal Conditioning Improves EMG Onset Detection
,”
Eur. J. Appl. Physiol.
,
110
(
3
), pp.
489
498
.
27.
Tsai
,
A.-C.
,
Hsieh
,
T.-H.
,
Luh
,
J.-J.
, and
Lin
,
T.-T.
,
2014
, “
A Comparison of Upper-Limb Motion Pattern Recognition Using EMG Signals During Dynamic and Isometric Muscle Contractions
,”
Biomed. Signal Process. Control
,
11
, pp.
17
26
.
28.
Müller
,
M.
,
2007
, “
Dynamic Time Warping
,”
Information Retrieval for Music and Motion
,
Springer
,
Berlin, Heidelberg
, pp.
69
84
.
29.
Bishop
,
C. M.
, and
Nasrabadi
,
N. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
30.
AbdelMaseeh
,
M.
,
Chen
,
T.-W.
, and
Stashuk
,
D.
,
2014
, “
Multifunction Myoelectric Control Using Multi-Dimensional Dynamic Time Warping
,”
36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Chicago, IL, Aug. 26–30, pp.
4366
4369
.
31.
Wachs
,
J. P.
,
Kölsch
,
M.
,
Stern
,
H.
, and
Edan
,
Y.
,
2011
, “
Vision-Based Hand-Gesture Applications
,”
Commun. ACM
,
54
(
2
), pp.
60
71
.
32.
Akl
,
A.
, and
Valaee
,
S.
,
2010
, “
Accelerometer-Based Gesture Recognition Via Dynamic-Time Warping, Affinity Propagation, and Compressive Sensing
,”
IEEE International Conference on Acoustics, Speech, and Signal Processing
(
ICASSP
), Dallas, TX, Mar. 14–19, pp.
2270
2273
.
33.
Yang
,
D.
,
Zhao
,
J.
,
Jiang
,
L.
, and
Liu
,
H.
,
2012
, “
Dynamic Hand Motion Recognition Based on Transient and Steady-State EMG Signals
,”
Int. J. Humanoid Rob.
,
9
(
1
), p. 1250007.
You do not currently have access to this content.