A Steer-By-Wire (SBW) control scheme is proposed for enhancing the lateral stability and handling capability of a super lightweight vehicle by using the energy optimal control method. Tire dissipation power and virtual power, which is the product of yaw moment and the deviation of actual yaw rate from the target yaw rate, were selected as performance measures to be minimized. The SBW control scheme was tested using Hardware-In-the-Loop (HIL) simulation on an SBW test rig. The case studies performed were high-speed rapid lane change, crosswind, and braking-in-a-turn. HIL simulation results showed that the SBW control scheme was able to maintain vehicle stability. The proposed SBW control design taking advantage of the full range steering of front wheel, significantly improves the vehicle handling capability. The results also demonstrate the importance of SBW control for super lightweight vehicles.

References

1.
Ohara
,
H.
, and
Murakami
,
T.
,
2008
, “
A Stability Control by Active Angle Control of Front-Wheel in a Vehicle System
,”
IEEE Trans. Ind. Electron.
,
55
(
3
), pp.
1277
1285
.10.1109/TIE.2007.909051
2.
Kim
,
C.
,
Jang
,
J.
,
Yu
,
S.
,
Lee
,
S.
,
Han
,
C.
, and
Hedrick
,
J.
,
2008
, “
Development of a Control Algorithm for a Tie-Rod-Actuating Steer-By-Wire System
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
9
), pp.
1543
1557
.10.1243/09544070JAUTO622
3.
Ackermann
,
J.
,
Bunte
,
T.
, and
Odenthal
,
D.
,
1999
, “
Advantages of Active Steering for Vehicle Dynamics Control
,”
International Symposium on Automotive Technology and Automation
, pp.
263
270
.
4.
Zheng
,
B.
, and
Anwar
,
S.
,
2009
, “
Yaw Stability Control of a Steer-By-Wire Equipped Vehicle Via Active Front Wheel Steering
,”
Mechatronics
,
19
(
6
), pp.
799
804
.10.1016/j.mechatronics.2009.04.005
5.
Yih
,
P.
, and
Gerdes
,
J. C.
,
2005
, “
Modification of Vehicle Handling Characteristics Via Steer-By-Wire
,”
IEEE Trans. Control Syst. Technol.
,
13
(
6
), pp.
965
976
.10.1109/TCST.2005.854320
6.
Güvenç
,
B. A.
,
Güvenç
,
L.
, and
Karaman
,
S.
,
2009
, “
Robust Yaw Stability Controller Design and Hardware-in-the-Loop Testing for a Road Vehicle
,”
IEEE Trans. Veh. Technol.
,
58
(
2
), pp.
555
571
.10.1109/TVT.2008.925312
7.
Ackermann
,
J.
,
1997
, “
Robust Control Prevents Car Skidding
,”
IEEE Control Syst. Mag.
,
17
(
3
), pp.
23
31
.10.1109/37.588073
8.
Mammar
,
S.
, and
Koenig
,
D.
,
2002
, “
Vehicle Handling Improvement by Active Steering
,”
Veh. Syst. Dyn.
,
38
(
3
), pp.
211
242
.10.1076/vesd.38.3.211.8288
9.
Jo
,
J.-S.
,
You
,
S.-H.
,
Joeng
,
J. Y.
,
Lee
,
K. I.
, and
Yi
,
K.
,
2008
, “
Vehicle Stability Control System for Enhancing Steerability, Lateral Stability, and Roll Stability
,”
Int. J. Automot. Technol.
,
9
(
5
), pp.
571
576
.10.1007/s12239-008-0067-9
10.
Fukao
,
T.
,
Miyasaka
,
S.
,
Mori
,
K.
,
Adachi
,
N.
, and
Osuka
,
K.
,
2004
, “
Active Steering Systems Based on Model Reference Adaptive Nonlinear Control
,”
Veh. Syst. Dyn.
,
42
(
5
), pp.
301
318
.10.1080/0042311042000266739
11.
Mokhiamar
,
O.
, and
Abe
,
M.
,
2005
, “
Experimental Verification Using a Driving Simulator of the Effect of Simultaneous Optimal Distribution of Tyre Forces for Active Vehicle Handling Control
,”
Proc. Inst. Mech. Eng., Part D
,
219
(
2
), pp.
135
149
.10.1243/095440705X6461
12.
Mashadi
,
B.
,
Majidi
,
M.
, and
Dizaji
,
H. P.
,
2010
, “
Optimal Vehicle Dynamics Controller Design Using a Four-Degrees-of-Freedom Model
,”
Proc. Inst. Mech. Eng., Part D
,
224
(
5
), pp.
645
659
.10.1243/09544070JAUTO1280
13.
Esmailzadeh
,
E.
,
Goodarzi
,
A.
, and
Vossoughi
,
G.
,
2003
, “
Optimal Yaw Moment Control Law for Improved Vehicle Handling
,”
Mechatronics
,
13
(
7
), pp.
659
675
.10.1016/S0957-4158(02)00036-3
14.
Zheng
,
S.
,
Tang
,
H.
,
Han
,
Z.
, and
Zhang
,
Y.
,
2006
, “
Controller Design for Vehicle Stability Enhancement
,”
Control Eng. Pract.
,
14
(
12
), pp.
1413
1421
.10.1016/j.conengprac.2005.10.005
15.
Furukawa
,
Y.
, and
Abe
,
M.
,
1997
, “
Advanced Chassis Control Systems for Vehicle Handling and Active Safety
,”
Veh. Syst. Dyn.
,
28
(
2
), pp.
59
86
.10.1080/00423119708969350
16.
Goede
,
M.
,
Stehlin
,
M.
,
Rafflenbeul
,
L.
,
Kopp
,
G.
, and
Beeh
,
E.
,
2009
, “
Super Light Car-Lightweight Construction Thanks to a Multi-Material Design and Function Integration
,”
Eur. Transp. Res. Rev.
,
1
(
1
), pp.
5
10
.10.1007/s12544-008-0001-2
17.
Fukushima
,
N.
,
Arslan
,
M. S.
, and
Hagiwara
,
I.
,
2009
, “
An Optimal Control Method Based on the Energy Flow Equation
,”
IEEE Trans. Control Syst. Technol.
,
17
(
4
), pp.
866
875
.10.1109/TCST.2008.2011282
18.
Abe
,
M.
,
2009
,
Vehicle Handling Dynamics: Theory and Application
,
Butterworth-Heinemman
, Amsterdam.
19.
Kiencke
,
U.
, and
Nielsen
,
L.
,
2005
,
Automotive Control Systems: For Engine, Driveline, and Vehicle
, 2nd ed.,
Springer-Verlag
,
New York
.
20.
Pacejka
,
H. B.
, and
Bakker
,
E.
,
1993
, “
The Magic Formula Tyre Model
,”
Vehicle Syst. Dyn.
,
21
(S1), pp.
1
18
.10.1080/00423119208969994
21.
Mokhiamar
,
O.
, and
Abe
,
M.
,
2002
, “
Active Wheel Steering and Yaw Moment Control Combination to Maximize Stability as Well as Vehicle Responsiveness During Quick Lane Change for Active Vehicle Handling Safety
,”
Proc. Inst. Mech. Eng., Part D
,
216
(
2
), pp.
115
124
.10.1243/0954407021528968
22.
Fukushima
,
N.
,
Ota
,
S.
,
Hashimoto
,
K.
,
Arslan
,
M. S.
, and
Hagiwara
,
I.
,
2009
, “
A New Vehicle Control Method Based on Tire Dissipation Power
,”
21st IAVSD Symposium on Dynamics of Vehicles on Roads and Tracks
, pp.
17
21
.
23.
Hatipoglu
,
C.
,
Özgüner
,
U.
, and
Redmill
,
K. A.
,
2003
, “
Automated Lane Change Controller Design
,”
IEEE Trans. Intell. Transp. Syst.
,
4
(
1
), pp.
13
22
.10.1109/TITS.2003.811644
24.
Forkenbrock
,
G. J.
, and
Boyd
,
P.
,
2007
, “
Light Vehicle ESC Performance Test Development
,” ESV Paper(07-0456).
25.
Baker
,
C. J.
, and
Reynolds
,
S.
,
1992
, “
Wind Induced Accidents of Road Vehicles
,”
Accid. Anal. Prev.
,
24
(
6
), pp.
559
575
.10.1016/0001-4575(92)90009-8
26.
Uffelmann
,
F.
,
1983
, “
Automotive Stability and Handling Dynamics in Cornering and Braking Maneuvers
,”
Veh. Syst. Dyn.
,
12
(
4–5
), pp.
203
223
.10.1080/00423118308968754
27.
Nuessle
,
M.
,
Rutz
,
R.
,
Leucht
,
M.
,
Nonnenmacher
,
M.
, and
Volk
,
H.
,
2007
, “
Objective Test Methods to Assess Active Safety Benefits of ESP
,”
20th International Technical Conference on the Enhanced Safety of Vehicles
.
28.
International Standard ISO 4138
:
2012
,
Passenger Cars—Steady-State Circular Driving Behaviour—Open-Loop Test Methods
.
29.
International Standard ISO 7401
:
2011
,
Road Vehicles—Lateral Transient Response Test Methods—Open-Loop Test Methods
.
You do not currently have access to this content.