The aim of this study is to assess the possibility to apply a new control approach dedicated to turbomachinery. The controller is fuzzy based using inputs expressed in polar coordinates. The advantage is that it manages two significant physical quantities, namely tangential and radial velocities that are related to steady state and transient behaviors, respectively. A synchronous filter is associated to the controller in order to enhance the ratio command force/bearing dynamic capacity. The approach was previously applied experimentally with success for the control of an academic test rig. It is adapted here for the control of an industrial compressor whose flexible rotor is supported by active magnetic bearings (AMB). At this stage, only numerical investigations are performed. The controller has to satisfy the standards and the end users requirements. In addition, it should be easy to implement. The behavior of the machine studied is assessed for several configurations of unbalances. A test that corresponds to usual industrial excitations (subsynchronous excitations at nominal speed) is also carried out. Results obtained are satisfactory and give insight into the potential of the approach. In addition, and as the fuzzy controller parameters are independent from the rotor design, the approach is a first step for the standardization of magnetic bearing controller synthesis.

References

1.
Maslen.
,
E. H.
,
2008
, “
Smart Machine Advances in Rotating Machinery
,”
Proceeding 9th International Conference on Vibrations in Rotating Machinery
, IMechE, Exeter, UK, pp.
3
14
.
2.
Ransom
,
D.
,
Masala
,
A.
,
Moore
,
J.
,
Vannini
,
G.
, and
Camatti
,
M.
,
2009
, “
Numerical and Experimental Simulation of a Vertical High Speed Motorcompressor Rotor Drop Onto Catcher Bearings
,”
J. Syst. Des. Dyn.
,
3
(
4
), pp.
596
606
.10.1299/jsdd.3.596
3.
Swann
,
M. K.
,
Sarichev
,
A. P.
, and
Tsunoda
,
E.
,
2008
, “
A diffusion Model for Active Magnetic Bearing Systems in Large Turbomachinery
,”
Proceeding 11th ISMB
, Japan, pp.
380
384
.
4.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
,
Magnetic Bearings, Theory, Design, and Application to Rotating Machinery
,
Springer-Verlag
, Dordrecht, The Netherlands, p.
535
.
5.
Couzon
,
P.-Y.
, and
Der Hagopian
,
J.
,
2007
, “
Neuro-Fuzzy Active Control of Rotor Suspended on Active Magnetic Bearing
,”
J. Vib. Control
,
13
(
4
), pp.
365
384
.10.1177/1077546307074578
6.
Chen
,
K.
,
Tung
,
P.
,
Tsai
,
M.
, and
Fan
,
Y.
,
2009
, “
A Self-Tuning Fuzzy PID-Type Controller Design for Unbalance Compensation in an Active Magnetic Bearing
,”
Expert Syst. Appl.
, pp.
8560
8570
.10.1016/j.eswa.2008.10.055
7.
Font
,
S.
,
Duc
,
G.
, and
Carrere
,
F.
,
1997
, “
Commande fréquentielle robuste—Application aux paliers magnétiques
,” Techniques de l'ingénieur, Mesures Analyses R 7 432.
8.
Sahinkaya
,
N. M.
,
Abulrub
,
A.-H. G.
,
Burrows
,
C. R.
, and
Keogh
,
P. S.
,
2010
, “
A Multiobjective Adaptive Controller for Magnetic Bearing Systems
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
122503
.10.1115/1.4001060
9.
Fittro
,
R. L.
, and
Knospe
,
C. R.
,
2002
, “
The μ Approach to Control of Active Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
566
570
.10.1115/1.1417484
10.
Li
,
G.
,
Lin
,
Z.
,
Allaire
,
P. E.
, and
Luo
,
J.
,
2006
, “
Modelling of a High Speed Rotor Test Rig With Active Magnetic Bearings
,”
ASME J. Vib. Acout.
,
128
(
3
), pp.
269
271
.10.1115/1.2172254
11.
Lei
,
S.
, and
Palazzolo
,
A. B.
,
2008
, “
Control of Flexible Rotor Systems With Active Magnetic Bearings
,”
J. Sound Vib.
,
314
(
1–2
), pp.
19
38
.10.1016/j.jsv.2007.12.028
12.
Spirig
,
M.
,
Schmied
,
J.
,
Jenckel
,
P.
, and
Kanne
,
U.
,
2002
, “
Three Practical Examples of Magnetic Bearing Control Design Using a Modern Tool
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
1025
1031
.10.1115/1.1417483
13.
ISO 14839-1,
2002
, “
Mechanical Vibration—Vibration of Rotating Machinery Equipped With Active Magnetic Bearings—Part 1: Vocabulary
.”
14.
ISO 14839-2,
2004
, “
Mechanical Vibration—Vibration of Rotating Machinery Equipped With Active Magnetic Bearings—Part 2: Evaluation of Vibration
.”
15.
ISO 14839-3,
2006
, “
Mechanical Vibration—Vibration of Rotating Machinery Equipped With Active Magnetic Bearings—Part 3: Evaluation of Stability Margin
.”
16.
API 617,
2002
,
Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical and Gas Industry Service
, 7th ed., American Petroleum Institute, Washington, DC.
17.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2012
, “
Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio
,”
ASME J. Eng. Gas Turbines Power
,
134
, p.
042503
.10.1115/1.4004537
18.
Lee
,
W.-L.
,
Schumacher
,
W.
, and
Canders
,
W.-R.
,
2003
, “
Unbalance Compensation on AMB System Without a Rotational Sensor
,”
JSME Int. J., Ser. C
,
46
, pp.
423
428
.10.1299/jsmec.46.423
19.
Shafai
,
B.
,
Beale
,
S.
,
LaRocca
,
P.
, and
Cusson
,
E.
,
1994
, “
Magnetic Bearing Control Systems and Adaptive Forced Balancing
,”
IEEE Control Syst. Technol.
, pp.
4
12
.10.1109/37.272775
20.
Mahfoud
,
J.
, and
Der Hagopian
,
J.
,
2011
, “
Fuzzy Active Control Of Flexible Structures by Using Electromagnetic Actuators
,”
ASCE's J. Aerosp. Eng.
,
24
(
3
), pp.
329
337
.10.1061/(ASCE)AS.1943-5525.0000067
21.
Mahlis
,
M.
,
Gaudiller
,
L.
, and
Der Hagopian
,
J.
,
2005
, “
Fuzzy Modal Active Control of the Dynamic Behavior of Flexible Structures
,”
J. Vib. Control
,
11
, pp.
67
88
.10.1177/10775463045046028
22.
Borne
,
P.
,
Rozinoer
,
J.
,
Dieulot
,
J.-Y.
, and
Dubois
,
L.
,
1998
,
Introduction à la commande floue
,
Edition Technip
, Paris, France, p.
102
.
23.
Fuh
,
C.-C.
, and
Tung
,
P.-C.
,
1997
, “
Robust Stability Analysis of Fuzzy Control Systems
,”
Elsevier Science B.V. Fuzzy Sets and Systems
, Vol.
88
(
3
), pp.
289
298
.10.1016/S0165-0114(96)00087-5
24.
Golob
,
M.
, and
Tovornik
,
B.
,
2003
, “
Modeling and Control of a Magnetic Suspension System
,”
Elsevier Ltd. ISA Trans.
,Vol.
42
(
1
), pp.
89
100
.10.1016/S0019-0578(07)60116-5
25.
Qiao
,
W. Z.
, and
Mizumoto
,
M.
,
1996
, “
PID Type Fuzzy Controller and Parameters Adaptive Method
,”
Fuzzy Sets Syst.
,
78
, pp.
23
35
.10.1016/0165-0114(95)00115-8
26.
Defoy
,
B.
,
Alban
,
T.
, and
Mahfoud
,
J.
,
2012
, “
Experimental Assessment of a New Fuzzy Controller Applied to a Flexible Rotor Supported by Active Magnetic Bearings
,”
Proceeding VIRM10
, IMechE, London, pp.
379
–388.
27.
Hawkins
,
L. A.
,
Murphy
,
B. T.
, and
Kajs
,
J.
,
2000
, “
Analysis and Testing of a Magnetic Bearing Energy Storage Flywheel With Gain Scheduled. MIMO Control
,”
Proceedings of ASME TURBOEXPO
, Germany.
28.
Park
,
J.
,
Palazzolo
,
A.
, and
Beach
,
R.
,
2008
, “
MIMO Active Vibration Control of Magnetically Suspended Flywheels for Satellite IPAC Service
,”
ASME J. Dyn. Sys., Meas., Control
,
130
(
4
), p.
041005
.10.1115/1.2936846
29.
Matsushita
,
O.
,
Takagi
,
M.
,
Yoneyama
,
M.
,
Yoshida
,
T.
, and
Saitoh
,
I.
,
1990
, “
Control of Rotor Vibration Due to Cross Stiffness Effect of Active Magnetic Bearing
,”
Proceeding of the 3rd International Conference on Rotordynamics (IFToMM)
, CNRS Lyon, France.
30.
Lalanne
,
M.
, and
Ferraris
,
G.
,
1998
,
Rotordynamics Prediction in Engineering
, 2nd ed.,
John Wiley & Sons
, Chichester, UK, p.
252
.
31.
Childs
,
D. W.
, and
Scharrer
,
J. K.
,
1986
, “
An Iwatsubo Based Solution for Labyrinth Seals: A Comparison to Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
108
, pp.
325
331
.10.1115/1.3239907
You do not currently have access to this content.