In this paper, the multi-agent flocking problem is investigated in a unified optimal control framework. The flocking characteristics, such as velocity alignment, navigation, cohesion, and collision/obstacle avoidance, are accomplished by formulating them into respective cost function terms. The resultant nonquadratic cost function poses a challenging optimal control problem. A novel inverse optimal control strategy is adopted to derive an analytical optimal control law. The optimality and asymptotic stability are proved and the distributed feedback control law only requires local information to achieve the flocking behaviors. Various simulation scenarios are used to demonstrate the effectiveness of the optimal flocking algorithm.
Issue Section:
Research Papers
References
1.
Reynolds
, C. W.
, 1987
, “Flocks, Herds, and Schools: A Distributed Behavioral Model
,” Comput. Graphics
, 21
(4
), pp. 26
–34
.2.
Vicsek
, T.
, Czirok
, A.
, Ben-Jacob
, E.
, Cohen
, I.
, and Shochet
, O.
, 1995
, “Novel Type of Phase Transition in a System of Self-driven Particles
,” Phys. Rev. Lett.
, 75
(6
), pp. 1226
–1229
.10.1103/PhysRevLett.75.12263.
Tanner
, H. G.
, Jadbabaie
, A.
, and Papps
, G. J.
, 2007
, “Flocking in Fixed and Switching Networks
,” IEEE Trans. Autom. Control
, 52
(5
), pp. 863
–868
.10.1109/TAC.2007.8959484.
Lee
, D.
, and Spong
, M. W.
, 2007
, “Stable Flocking of Multiple Inertial Agents on Balanced Graphs
,” IEEE Trans. Autom. Control
, 52
(8
), pp. 1469
–1475
.10.1109/TAC.2007.9027525.
Regmi
, A.
, Sandoval
, R.
, Byrne
, R.
, Tanner
, H.
, and Abdallah
, C. T.
, 2005
, “Experimental Implementation of Flocking Algorithms in Wheeled Mobile Robots
,” Proceedings of 2005 American Control Conference
, Portland, OR
, pp. 894
–911
.6.
Moshtagh
, N.
, and Jadbabaie
, A.
, 2007
, “Distributed Geodesic Control Laws for Flocking of Nonholonomic Agents
,” IEEE Trans. Autom. Control
, 52
(4
), pp. 681
–686
.10.1109/TAC.2007.8945287.
Cucker
, F.
, and Smale
, S.
, 2007
, “Emergent Behavior in Flocks
,” IEEE Trans. Autom. Control
, 52
(5
), pp. 852
–862
.10.1109/TAC.2007.8958428.
Dong
, W. J.
, 2011
, “Flocking of Multiple Mobile Robots Based on Backstepping
,” IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
, 41
(2
), pp. 414
–424
.10.1109/TSMCB.2010.20569179.
Tanner
, H. G.
, 2004
, “Flocking With Obstacle Avoidance in Switching Networks of Interconnected Vehicles
,” Proceedings of 2004 IEEE International Conference on Robotics and Automation
, New Orleans, LA
, pp. 3006
–3011
.10.
Gu
, D. B.
, and Hu
, H. S.
, 2007
, “Using Fuzzy Logic to Design Separation Function in Flocking Algorithms
,” IEEE Trans. Fuzzy Syst.
, 16
(4
), pp. 826
–838
.10.1109/TFUZZ.2008.91728911.
Zavlanos
, M. M.
, Tanner
, H. G.
, Jadbabaie
, A.
, and Pappas
, G. J.
, 2009
, “Hybrid Control for Connectivity Preserving Flocking
,” IEEE Trans. Autom. Control
, 54
(12
), pp. 2869
–2875
.10.1109/TAC.2009.203375012.
Cucker
, F.
, and Dong
, J. G.
, 2010
, “Avoiding Collisions in Flocks
,” IEEE Trans. Autom. Control
, 55
(5
), pp. 1238
–1243
.10.1109/TAC.2010.204235513.
Zhang
, H. T.
, Zhai
, C.
, and Chen
, Z. Y.
, 2011
, “A General Alignment Repulsion Algorithm for Flocking of Multi-Agent Systems
,” IEEE Trans. Autom. Control
, 56
(2
), pp. 430
–435
.10.1109/TAC.2010.208965214.
Belta
, C.
, and Kumar
, V.
, 2004
, “Abstraction and Control for Groups of Robots
,” IEEE Trans. Rob.
, 20
(5
), pp. 865
–875
.10.1109/TRO.2004.82949815.
Olfati-Saber
, R.
, 2006
, “Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory
,” IEEE Trans. Autom. Control
, 51
(3
), pp. 401
–419
.10.1109/TAC.2005.86419016.
Su
, H. S.
, Wang
, X. F.
, and Lin
, Z. L.
, 2009
, “Flocking of Multi-Agent With A Virtual Leader
,” IEEE Trans. Autom. Control
, 54
(2
), pp. 293
–307
.10.1109/TAC.2008.201089717.
Gu
, D. B.
, and Wang
, Z. Y.
, 2009
, “Leader-Follower Flocking: Algorithms and Experiments
,” IEEE Trans. Control Syst. Technol.
, 17
(5
), pp. 1211
–1219
.10.1109/TCST.2008.200946118.
Haddad
, W. M.
, and Chellaboina
, V.
, 2000
, Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach
, Princeton University Press
, Princeton, NJ
.19.
Bernstein
, D. S.
, 1993
, “Nonquadratic Cost and Nonlinear Feedback Control
,” Int. J. Robust Nonlinear Control
, 3
(3
), pp. 211
–229
.10.1002/rnc.459003030320.
Ren
, W.
, and Beard
, R. W.
, 2008
, Distributed Consensus in Multi-Vehicle Cooperative Control
, Springer-Verlag
, London
.21.
Bernstein
, D. S.
, 2005
, Matrix Mathematics: Theory, Facts, and Formulas With Application to Linear Systems Theory
, Princeton University Press
, Princeton, NJ
.22.
Wang
, J. N.
, and Xin
, M.
, 2012
, “Distributed Optimal Cooperative Tracking Control of Multiple Autonomous Robots
,” Rob. Auton. Syst.
, 60
(4
), pp. 572
–583
.10.1016/j.robot.2011.12.002Copyright © 2013 by ASME
You do not currently have access to this content.