This paper considers flocking to the virtual leader in network of agents with double-integrator. A locally linear algorithm is employed which guarantees exponential flocking to the virtual leader. A lower bound for flocking rate is calculated which is independent of the initial conditions. Simulations are provided to validate the result and it is shown that the calculated rate is not over bound the actual convergence rate. The effect of coefficients of algorithm is investigated and it is shown that the similar results can be inferred from the calculated formula for the convergence rate.
Issue Section:
Technical Briefs
References
1.
Reynolds
, C. W.
, 1987
, “Flock, Herds and Schools: A Distributed Behavioral Model
,” Comput. Graph.
, 21
(4
), pp. 25
–34
.10.1145/37402.374062.
Vicsek
, T.
, Czirok
, A.
, Ben-Jacob
, E.
, Cohen
, I.
, and Shochet
, O.
, 1995
, “Novel Type of Phase Transition in a System of Self Driven Particles
,” Phys. Rev. Lett.
, 75
(6
), pp. 1226
–1229
.10.1103/PhysRevLett.75.12263.
Jadbabaie
, A.
, Lin
, J.
, and Morse
, S.
, 2003
, “Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules
,” IEEE Trans. Autom. Control
, 48
(6
), pp. 988
–1001
.10.1109/TAC.2003.8127814.
Olfati-Saber
R.
, and Murray
, R.
, 2004
, “Consensus Problems in Networks of Agents With Switching Topology and Time Delays
,” IEEE Trans. Autom. Control
, 49
(9
), pp. 1520
–1533
.10.1109/TAC.2004.8341135.
Olshevsky
, A.
, and Tsitsiklis
, J. N.
, 2006
, “Convergence Rates in Distributed Consensus and Averaging
,” Proceeding of the 45th IEEE
Conference on Decision and Control
, San Diego, CA, Dec. 13–15, pp. 3387
–3392
.10.1109/CDC.2006.3768996.
Bliman
, P.-A.
, Nedic
, A.
, and Ozdaglar
, A.
, 2008
, “Rate of Convergence for Consensus With Delays
,” Proceeding of the 47th IEEE
Conference on Decision and Control
, Cancun
, Mexico
, Dec. 9–11, pp. 4849
–4854
.10.1109/CDC.2008.47389417.
Nedic
, A.
, and Ozdaglar
, A.
, 2010
, “Convergence Rate for Consensus With Delays
,” J. Global Optim.
, 47
(3
), pp. 437
–456
.10.1007/s10898-008-9370-28.
Cao
, M.
, Morse
, A. S.
, and Anderson
, B. D. O.
, 2008
, “Reaching a Consensus in a Dynamically Changing Environment: Convergence Rates, Measurement Delays and Asynchronous Events
,” SIAM J. Control Optim.
, 47
(2
), pp. 601
–623
.10.1137/0606570299.
Cao
, M.
, Spielman
, D. A.
, and Morse
, A. S.
, 2005
, “A Lower Bound on Convergence of a Distributed Network Consensus Algorithm
,” Proceeding of the 44th IEEE
Conference on Decision and Control and the European Control Conference
, Seville, Spain, Dec. 12–15, pp. 2356
–2361
.10.1109/CDC.2005.158251410.
Ren
, W.
, Moore
, K.
, and Chen
, Y. Q.
, 2007
, “High-Order and Model Reference Consensus Algorithms in Cooperative Control of Multivehicle Systems
,” ASME J. Dyn. Sys., Meas., Control
, 129
(5
), pp. 678
–688
.10.1115/1.276450811.
Wieland
, P.
, Kim
, J. S.
, Scheu
, H.
, and Allgower
, F.
, 2008
, “On Consensus in Multi-Agent Systems With Linear High-Order Agents
,” Proceeding of the 17th
IFAC
, Seoul, Korea, July 6–11, pp. 1541
–1546
.10.3182/20080706-5-KR-1001.0026312.
Tanner
, H. G.
, Jadbabaie
, A.
, and Pappas
, G. J.
, 2003
, “Stable Flocking of Mobile Agents, Part I: Fixed Topology
,” Proceeding of the 42nd IEEE
Conference on Decision and Control
, San Diego, CA, Dec. 9–12, pp. 2010
–2015
.10.1109/CDC.2003.127291013.
Tanner
, H. G.
, Jadbabaie
, A.
, and Pappas
, G. J.
, 2003
, “Stable Flocking of Mobile Agents, Part II: Dynamic Topology
,” Proceeding of the 42nd IEEE
Conference on Decision and Control
, San Diego, CA, Dec. 9–12, pp. 2016
–2021
.10.1109/CDC.2003.127291114.
Xie
, G.
, and Wang
, L.
, 2007
, “Consensus Control for a Class of Networks of Dynamic Agents
,” Int. J. Robust Nonlinear Control
, 17
(10–11
), pp. 941
–959
.10.1002/rnc.114415.
Shi
, H.
, Wang
, L.
, and Chu
, T.
, 2005
, “Virtual Leader Approach to Coordinated Control of Multiple Mobile Agents With Asymmetric Interactions
,” Proceedings of the 44th IEEE
Conference on Decision and Control and the European Control Conference
, Seville, Spain, Dec. 12–15, pp. 6250
–6255
.10.1109/CDC.2005.158316316.
Olfati-Saber
, R.
, 2006
, “Flocking for Multi Agent Dynamic Systems: Algorithms and Theory
,” IEEE Trans. Autom. Control
, 51
(3
), pp. 988
–1001
.10.1109/TAC.2005.86419017.
Porfiri
, M.
, Roberson
, D. G.
, and Stilwell
, D. J.
, 2007
, “Tracking and Formation Control of Multiple Autonomous Agents: A Two-Level Consensus Approach
,” Automatica
, 43
(8
), pp. 1318
–1328
.10.1016/j.automatica.2007.01.00418.
Peng
, L.
, Yingmin
, J.
, Junping
, D.
, and Shiying
, Y.
, 2007
, “Distributed Consensus Control for Second-Order Agents With Fixed Topology and Time-Delay
,” Proceedings of 26th Chinese Control Conference
(CCC
), Zhangjiajie
, Hunan, China, July 26–31, pp. 577
–581
.10.1109/CHICC.2006.434716519.
Zhu
, J.
, Tian
, Y. P.
, and Kuang
, J.
, 2009
, “On the General Consensus Protocol of Multi-Agent Systems With Double-Integrator Dynamics
,” Linear Algebra Appl. J.
, 431
(5-7
), pp. 701
–715
.10.1016/j.laa.2009.03.01920.
Khalil
, H. K.
, 2002
, Nonlinear Systems
, 3rd ed., Prentice-Hall
, Englewood Cliffs, NJ
.Copyright © 2013 by ASME
You do not currently have access to this content.