This paper presents an identification method for the backlash embedded in ground vehicle steering systems. A backlash model relates the steering system output—road-wheel steering angle (RWSA) to the input—hand-wheel steering angle (HWSA). An accurate backlash model is helpful in achieving a better control performance or a more precise reference model for vehicle dynamic control. The proposed identification procedure consists of two parts. First, the unmeasurable RWSA is estimated by manipulating equations of a two degrees-of-freedom vehicle lateral dynamics model, where the signals related to the vehicle motion are obtained from an inertial measurement unit and global positioning system, and the estimation problem is transformed to solving an algebraic equation by optimization tools. Second, by applying a recursive general identification algorithm, parameters that characterize the steering system backlash model are identified recursively from the reconstructed RWSA and measured HWSA. Vehicle road tests have been carried out and the experimental results show effectiveness of the proposed identification method. The developed algorithm can be applied both on-line and off-line, and its on-line implementation process is also presented.

References

1.
Tjønnås
,
J.
, and
Johansen
,
T. A.
,
2010
, “
Stabilization of Automotive Vehicles Using Active Steering and Adaptive Brake Control Allocation
,”
IEEE Trans. Control Syst. Technol.
,
18
(
3
), pp.
545
558
.10.1109/TCST.2009.2023981
2.
Vörös
,
J.
,
2010
, “
Modeling and Identification of Systems With Backlash
,”
Automatica
,
46
(
2
), pp.
369
374
.10.1016/j.automatica.2009.11.005
3.
Vörös
,
J.
,
2010
, “
Identification of Cascade Systems With Backlash
,”
Int. J. Control
,
83
(
6
), pp.
1117
1124
.10.1080/00207171003596517
4.
Bai
,
E.-W.
,
2002
, “
Identification of Linear Systems With Hard Input Nonlinearities of Known Structure
,”
Automatica
,
38
(
5
), pp.
853
860
.10.1016/S0005-1098(01)00281-3
5.
Feng
,
D.
,
Wang
,
J.
, and
Huang
,
D.
,
2012
, “
Hand-Wheel Steering Signal Estimation and Diagnosis Approaches for Ground Vehicles
,”
Control Eng. Pract.
,
20
(
7
), pp.
654
662
.10.1016/j.conengprac.2012.03.004
6.
Ghaffari
,
A.
,
Tabatabaei Oreh
,
S. H.
,
Kazemi
,
R.
, and
Karbalaei
,
M. A. R.
,
2011
, “
An Intelligent Approach to the Lateral Forces Usage in Controlling the Vehicle Yaw Rate
,”
Asian J. Control
,
13
(
2
), pp.
213
231
.10.1002/asjc.312
7.
Du
,
H.
,
Zhang
,
N.
, and
Dong
,
G.
,
2010
, “
Stabilizing Vehicle Lateral Dynamics With Considerations of Parameter Uncertainties and Control Saturation Through Robust Yaw Control
,”
IEEE Trans. Veh. Technol.
,
59
(
5
), pp.
2593
2597
.10.1109/TVT.2010.2043860
8.
Wang
,
R.
, and
Wang
,
J.
,
2011
, “
Fault-Tolerant Control With Active Fault Diagnosis for Four-Wheel Independently-Driven Electric Ground Vehicles
,”
IEEE Trans. Veh. Technol.
,
60
(
9
), pp.
4276
4287
.10.1109/TVT.2011.2172822
9.
Vörös
,
J.
,
2003
, “
Recursive Identification of Hammerstein Systems With Discontinuous Nonlinearities Containing Dead-Zones
,”
IEEE Trans. Autom. Control
,
48
(
12
), pp.
2203
2206
.10.1109/TAC.2003.820146
10.
Cerone
,
V.
, and
Regruto
,
D.
,
2007
, “
Bounding the Parameters of Linear Systems With Input Backlash
,”
IEEE Trans. Autom. Control
,
52
(
3
), pp.
531
536
.10.1109/TAC.2007.892375
11.
Giri
,
F.
,
Rochdi
,
Y.
,
Chaoui
,
F. Z.
, and
Brouri
,
A.
,
2008
, “
Identification of Hammerstein Systems in Presence of Hysteresis-Backlash and Hysteresis-Relay Nonlinearities
,”
Automatica
,
44
(
3
), pp.
767
775
.10.1016/j.automatica.2007.07.005
12.
Dong
,
R.
,
Tan
,
Y.
, and
Chen
,
H.
,
2010
, “
Recursive Identification for Dynamic Systems With Backlash
,”
Asian J. Control
,
12
(
1
), pp.
26
38
.10.1002/asjc.157
13.
Dong
,
R.
,
Tan
,
Q.
, and
Tan
,
Y.
,
2009
, “
Recursive Identification Algorithm for Dynamic Systems With Output Backlash and Its Convergence
,”
Int. J. Appl. Math. Comput. Sci.
,
19
(
4
), pp.
631
638
.10.2478/v10006-009-0050-2
14.
Vörös
,
J.
,
2011
, “
Identification of Nonlinear Systems With General Output Backlash
,”
Proceedings of the 18th International Conference on Process Control
.
15.
Cerone
,
V.
,
Piga
,
D.
, and
Regruto
,
D.
,
2009
, “
Parameter Bounds Evaluation for Linear System With Output Backlash
,”
Proceedings of 2009 SYSID
.
16.
Lagerberg
,
A.
, and
Egardt
,
B.
,
2007
, “
Backlash Estimation With Application to Automotive Powertrains
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
483
493
.10.1109/TCST.2007.894643
17.
Ruderman
,
M.
,
Hoffmann
,
F.
, and
Bertram
,
T.
,
2009
, “
Modeling and Identification of Elastic Robot Joints With Hysteresis and Backlash
,”
IEEE Trans. Ind. Electron.
,
56
(
10
), pp.
3840
3847
.10.1109/TIE.2009.2015752
18.
Villwock
,
S.
, and
Pacas
,
M.
,
2009
, “
Time-Domain Identification Method for Detecting Mechanical Backlash in Electrical Drives
,”
IEEE Trans. Ind. Electron.
,
56
(
2
), pp.
568
573
.10.1109/TIE.2008.2003498
19.
Nordin
,
M.
, and
Gutman
,
P.-O.
,
2002
, “
Controlling Mechanical Systems With Backlash: A Survey
,”
Automatica
,
38
(
10
), pp.
1633
1649
.10.1016/S0005-1098(02)00047-X
20.
Deng
,
M.
,
Jiang
,
C.
, and
Inoue
,
A.
,
2011
, “
Operator-Based Robust Control for Nonlinear Plants With Uncertain Non-Symmetric Backlash
,”
Asian J. Control
,
13
(
2
), pp.
317
327
.10.1002/asjc.284
21.
Zhou
,
J.
,
Wen
,
C.
, and
Zhang
,
Y.
,
2004
, “
Adaptive Backstepping Control of a Class of Uncertain Nonlinear Systems With Unknown Backlash-Like Hysteresis
,”
Autom. Control, IEEE Trans.
,
49
(
10
), pp.
1751
1759
.10.1109/TAC.2004.835398
22.
Márton
,
L.
, and
Lantos
,
B.
,
2009
, “
Control of Mechanical Systems With Stribeck Friction and Backlash
,”
Syst. Control Lett.
,
58
(
2
), pp.
141
147
.10.1016/j.sysconle.2008.10.001
23.
Tao
,
G.
,
Ma
,
X.
, and
Ling
,
Y.
,
2001
, “
Optimal and Nonlinear Decoupling Control of Systems With Sandwiched Backlash
,”
Automatica
,
37
(
2
), pp.
165
176
.10.1016/S0005-1098(00)00153-9
24.
Phanomchoeng
,
G.
,
Rajamani
,
R.
, and
Piyabongkarn
,
D.
,
2011
, “
Nonlinear Observer for Bounded Jacobian Systems, With Applications to Automotive Slip Angle Estimation
,”
IEEE Trans. Autom. Control
,
56
(
5
), pp.
1163
1170
.10.1109/TAC.2011.2108552
25.
Hahn
,
J.
,
Rajamani
,
R.
, and
Alexander
,
L.
,
2002
, “
GPS-Based Real-Time Identification of Tire-Road Friction Coefficient
,”
IEEE Trans. Control Syst. Technol.
,
10
(
3
), pp.
331
343
.10.1109/87.998016
26.
Braghin
,
F.
,
Cheli
,
F.
, and
Sabbioni
,
E.
,
2011
, “
Identification of Tire Model Parameters Through Full Vehicle Experimental Tests
,”
ASME J. Dyn. Sys., Meas., Control
,
133
(
3
), p.
031006
.10.1115/1.4003093
27.
Nishihara
,
O.
, and
Masahiko
,
K.
,
2011
, “
Estimation of Road Friction Coefficient Based on the Brush Model
,”
ASME J. Dyn. Sys., Meas., Control
,
133
(
4
), p.
041006
.10.1115/1.4003266
28.
Wang
,
J.
,
Alexander
,
L.
, and
Rajamani
,
R.
,
2004
, “
Friction Estimation on Highway Vehicles Using Longitudinal Measurements
,”
ASME J. Dyn. Sys., Meas., Control
,
126
(
2
), pp.
265
275
.10.1115/1.1766028
29.
Wang
,
R.
,
Chen
,
Y.
,
Feng
,
D.
,
Huang
,
X.
, and
Wang
,
J.
,
2011
, “
Development and Performance Characterization of an Electric Ground Vehicle With Independently-Actuated In-Wheel Motors
,”
J. Power Sources
,
196
(
8
), pp.
3962
3971
.10.1016/j.jpowsour.2010.11.160
30.
Huang
,
X.
, and
Wang
,
J.
,
2011
, “
Lightweight Vehicle Control-Oriented Modeling and Payload Parameter Sensitivity Analysis
,”
IEEE Trans. Veh. Technol.
,
60
(
5
), pp.
1999
2011
.10.1109/TVT.2011.2148135
31.
Chen
,
Y.
, and
Wang
,
J.
,
2012
, “
Design and Evaluation on Electric Differentials for Over-Actuated Electric Ground Vehicles With Four Independent In-Wheel Motors
,”
IEEE Trans. Veh. Technol.
,
61
(
4
), pp.
1534
1542
.10.1109/TVT.2012.2187940
32.
Oxford Technical Systems
,
2006
, “
RT3000 Inertial and Measurement System User Manual
.”
You do not currently have access to this content.