Magnetorheological (MR) fluid dampers have a semicontrollable damping force output that is dependent on the current input to the damper, as well as the relative velocity. The mechanical construction, fluid properties, and embedded electromagnet result in a dynamic damper response. This study evaluates four modeling approaches with respect to predicting the multi-input single-output behavior of an experimental MR damper when the inputs are band-limited random signals typically encountered in primary suspension applications. The first two models in this study are static in the sense that there is a unique output for any given set of inputs and no dynamics is present in either model. The third model incorporates a dynamic filter with the nonlinear model to exhibit hysteretic effects, which are known to exist in actual MR dampers. The fourth model is probabilistic and illustrates the dynamic nature of an actual MR damper. The results of this study clearly show the importance of nonlinear and dynamic effects in magnetorheological damper response. This study also highlights the importance of characterizing magnetorheological dampers using excitation signals that are representative of an actual implementation.

1.
Poyner
,
J. C.
, 2001, “
Innovative Designs for Magneto-Rheological Dampers
,” MS thesis, Virginia Tech, Blacksburg, VA.
2.
Goncalves
,
F.
, 2001, “
Dynamic Analysis of Semiactive Control Techniques for Vehicle Applications
,” MS thesis, Virginia Tech, Blacksburg, VA.
4.
Koo
,
J. H.
, 2003, “
Using Magneto-Rheological Dampers in Semiactive Tuned Vibration Absorbers to Control Structural Vibrations
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
5.
Simon
,
D.
, 2001, “
Investigation of the Effectiveness of Skyhook Suspension for Controlling Roll Dynamics of Sport Utility Vehicles Using Magneto-Rheological Dampers
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
6.
Masi
,
J. W.
, 2001, “
Affective of Control Techniques on the Performance of Semiactive Dampers
,” MS thesis, Virginia Tech, Blacksburg, VA.
7.
Ma
,
X. Q.
,
Wang
,
E. R.
,
Rakheja
,
S.
, and
Su
,
C. Y.
, 2002, “
Modeling Hysteretic Characteristics of MR Fluid Damper and Model Validation
,”
Proceedings of the 41st IEEE Conference on Decision and Control
, Las Vegas, NV.
8.
Spencer
,
B. F.
,
Dyke
,
S. J.
,
Sain
,
M. K.
, and
Carlson
,
J. D.
, 1997, “
Phenomenological Model for a Magnetorheological Damper
,”
J. Eng. Mech.
0733-9399,
123
, pp.
230
252
.
9.
Dominguez
,
A.
,
Sedaghati
,
R.
, and
Stiharu
,
I.
, 2004, “
Modeling the Hysteresis Phenomenon of Megnetorheological Dampers
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
1351
1361
.
10.
Song
,
X.
,
Ahmadian
,
M.
, and
Southward
,
S. C.
, 2005, “
Modeling Magneto-Rheological Dampers With Application of Nonparametric Approach
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
421
432
.
11.
Choi
,
S. B.
,
Lee
,
S. -K.
, and
Park
,
Y. -P.
, 2001, “
A Hysteresis Model for the Field-Dependent Damping Force of a Magnetorheological Damper
,”
J. Sound Vib.
0022-460X,
245
(
2
), pp.
375
383
.
12.
Snyder
,
R.
,
Kamath
,
G. M.
, and
Wereley
,
N. M.
, 2001, “
Characterization and Analysis of Magnetorheological Damper Behavior Under Sinusoidal Loading
,”
AIAA J.
0001-1452,
39
(
7
), pp.
1240
1253
.
13.
Hong
,
S. R.
,
Choi
,
S. B.
,
Choi
,
Y. -T.
, and
Wereley
,
N. M.
, 2003, “
Comparison of Damping Force Models for an Electrorheological Fluid Damper
,”
Int. J. Veh. Des.
0143-3369,
33
, pp.
17
35
.
14.
Ma
,
X. Q.
,
Rakheja
,
S.
, and
Su
,
C. -Y.
, 2007, “
Development and Relative Assessments of Models for Characterizing the Current Dependent Hysteresis Properties of Magneto-Rheological Fluid Dampers
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
18
(
5
), pp.
487
502
.
15.
Wang
,
E. R.
,
Ma
,
X. Q.
,
Rakhela
,
S.
, and
Su
,
C. Y.
, 2005, “
Modeling the Hysteretic Characteristics of a Magnetorheological Fluid Damper
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
217
, pp.
537
550
.
16.
Lin
,
P. Y.
,
Roschke
,
P.
, and
Loh
,
C. H.
, 2005, “
System Identification and Real Application of a Smart Magneto-Rheological Damper
,”
Proceedings of the 20th IEEE International Symposium on Intelligent Control, ISIC ‘05 and the 13th Mediterranean Conference on Control and Automation, MED ‘05
, pp.
989
994
.
17.
Wang
,
D. H.
, and
Liao
,
W. H.
, 2005, “
Modeling and Control of Magnetorheological Fluid Dampers Using Neural Networks
,”
Smart Mater. Struct.
0964-1726,
14
(
1
), pp.
111
126
.
18.
Jiménez
,
R.
, and
Álvarez-Icaza
,
L.
, 2005, “
LuGre Friction Model for a Magnetorheological Damper
,”
Struct. Control Health Monit.
1545-2255,
12
(
1
), pp.
91
116
.
19.
Xia
,
P. -Q.
, 2003, “
An Inverse Model of MR Damper Using Optimal Neural Network and System Identification
,”
J. Sound Vib.
0022-460X,
266
(
5
), pp.
1009
1023
.
20.
Snyder
,
R. A.
,
Kamath
,
G. M.
, and
Wereley
,
N. M.
, 2000, “
Characterization and Analysis of Magnetorheological Damper Behavior Due to Sinusoidal Loading
,”
Proc. SPIE
0277-786X,
3989
, pp.
213
229
.
21.
Pang
,
L.
,
Kamath
,
G. M.
, and
Wereley
,
N. M.
, 1998, “
Dynamic Characterization and Analysis of Magnetorheological Damper Behavior
,”
Proc. SPIE
0277-786X,
3327
, pp.
284
302
.
22.
Medina
,
J.
,
Marichal
,
M.
, and
Morales
,
S.
, 2008, “
Development of Two Inverse Models of a Magnetorheological Damper for the Control of Vibrations in Civil Structures
,”
Boletin Tecnico/Technical Bulletin
,
46
(
2
), pp.
1
22
.
23.
Yang
,
L.
,
Pan
,
S.
,
Wang
,
W.
, and
Feng
,
P.
, 2006, “
Experiment and Modeling Research on Hysteretic Loop of Magnetorheological Damper
,”
Jixie Gongcheng Xuebao/Chinese J. of Mechanical Engineering
,
42
(
11
), pp.
137
143
.
24.
Kwok
,
N. M.
,
Ha
,
Q. P.
,
Nguyen
,
T. H.
,
Li
,
J.
, and
Samali
,
B.
, 2006, “
A Novel Hysteretic Model for Magnetorheological Fluid Dampers and Parameter Identification Using Particle Swarm Optimization
,”
Sens. Actuators, A
0924-4247,
132
(
2
), pp.
441
451
.
25.
Seong
,
M. -S.
,
Choi
,
S. -B.
, and
Han
,
Y. -M.
, 2009, “
Damping Force Control of a Vehicle MR Damper Using a Preisach Hysteretic Compensator
,”
Smart Mater. Struct.
0964-1726,
18
(
7
), p.
074008
.
26.
Hong
,
S. -R.
,
John
,
S.
,
Wereley
,
N. M.
,
Choi
,
Y. -T.
, and
Choi
,
S. -B.
, 2008, “
A Unifying Perspective on the Quasi-Steady Analysis of Magnetorheological Dampers
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
19
(
8
), pp.
959
976
.
27.
Wang
,
E.
,
Chen
,
Y.
,
Ma
,
X.
,
Su
,
C.
, and
Subhash
,
R.
, 2005, “
MR-Damper F-V Model Decoupling Control and Hysteresis Properties
,”
Jixie Gongcheng Xuebao/Chinese J. of Mechanical Engineering
,
41
(
7
), pp.
186
191
. 0002-7820
28.
Wang
,
H.
, 2006, “
Road Profiler Performance Evaluation and Accuracy Criteria Analysis
,” MS thesis, Virginia Tech, Blacksburg, VA.
29.
Paré
,
C. A.
, and
Ahmadian
,
M.
, 2000, “
A Quarter-Car Experimental Analysis of Alternative Semiactive Control Methods
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
11
, pp.
604
612
.
30.
Richards
,
R.
, 2007, “
Comparison of Linear, Nonlinear, Hysteretic, and Probabilistic MR Damper Models
,” MS thesis, Virginia Tech, Blacksburg, VA.
You do not currently have access to this content.