This paper presents an optimal web guiding strategy based on the dynamic analysis of the lateral web behavior and a new fiber optic lateral web position measurement sensor. First, a lateral dynamic model of a moving web is revisited with an emphasis on correct application of appropriate boundary conditions. Then the dynamic models of two common intermediate guides (remotely pivoted guide and offset-pivot guide) are investigated. The effect of various model parameters on lateral web behavior is analyzed and discussions on proper selection of the parameters are given. Based on the model analysis, we discuss the design of a linear quadratic optimal controller that is capable of accommodating structured parametric uncertainties in the lateral dynamic model. The optimal guide control system is evaluated by a series of experiments on a web platform with different web materials under various operating conditions. Implementation of the controller with a new fiber optic lateral sensor for different scenarios is discussed. Results show good guiding performance in the presence of disturbances and with uncertainties in the model parameters.

1.
Shelton
,
J. J.
, 1968, “
Lateral Dynamics of a Moving Web
,” Ph.D. thesis, Oklahoma State University, Stillwater, OK.
2.
Shelton
,
J. J.
, and
Reid
,
K. N.
, 1971, “
Lateral Dynamics of an Idealized Web
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
93
(
3
), pp.
187
192
.
3.
Shelton
,
J. J.
, and
Reid
,
K. N.
, 1971, “
Lateral Dynamics of Real Moving Web
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
93
(
3
), pp.
180
186
.
4.
Sievers
,
L. A.
, 1987, “
Modeling and Control of Lateral Web Dynamics
,” Ph.D. thesis, Rensselaer Polytechnic Institute.
5.
Kardamilas
,
C. E.
, 1990, “
Stochastic Modeling and Control of Lateral Web Dynamics
,” Ph.D. thesis, Oklahoma State University.
6.
Benson
,
R. C.
, 2002, “
Lateral Dynamics of a Moving Web With Geometric Imperfection
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
25
33
.
7.
Sievers
,
L.
,
Balas
,
M. J.
, and
von Flotow
,
A.
, 1988, “
Modeling of Web Conveyance Systems for Multivariable Control
,”
IEEE Trans. Autom. Control
0018-9286,
33
(
6
), pp.
524
531
.
8.
Young
,
G. E.
,
Shelton
,
J. J.
, and
Kardamilas
,
C. E.
, 1989, “
Modeling and Control of Multiple Web Spans Using State Estimation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
111
, pp.
505
510
.
9.
Pagilla
,
P. R.
,
Dwivedula
,
R. V.
,
Zhu
,
Y. L.
,
Mandal
,
S. S.
,
Hopcus
,
K. I.
, and
Haque
,
J.
, 2001, “
Lateral Control of a Web Using Estimated Velocity Feedback
,”
Proceedings of the Sixth International Conference on Web Handling
, Oklahoma State University, Stillwater, OK, pp.
34
45
.
10.
Mandal
,
S. S.
, 2000, “
Lateral Control of a Web using Estimated Velocity Feedback
,” MA thesis, Oklahoma State University, Stillwater, OK.
11.
Yerashunas
,
J. B.
,
Abreu-Garcia
,
J. A. D.
, and
Hartley
,
T. T.
, 2003, “
Control of Lateral Motion in Moving Webs
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
11
(
5
), pp.
684
693
.
12.
Shin
,
K. -H.
,
Kwon
,
S. -O.
,
Kim
,
S. -H.
, and
Song
,
S. -H.
, 2004, “
Feedforward Control of the Lateral Position of a Moving Web Using System Identification
,”
IEEE Trans. Ind. Appl.
0093-9994,
40
(
6
), pp.
1637
1643
.
13.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
, 2004,
Optimal Control: Linear Quadratic Methods
,
Prentice-Hall of India
,
India
.
14.
Seshadri
,
A.
, and
Pagilla
,
P. R.
, 2007, “
Design and Development of a New Edge Sensor for Web Guiding
,”
IEEE Sens. J.
1530-437X,
7
(
5
), pp.
698
706
.
You do not currently have access to this content.