This paper proposes a new tracking controller for autonomous underwater vehicles (AUVs) using the concept of simultaneous quadratic stabilization. The nonlinear underwater vehicle system is viewed as a set of locally linear time invariant systems obtained by linearizing the system equations on the reference trajectory about some discrete points. A single stabilizing controller is then designed for the set of systems so obtained. However, this controller requires the exact parameters of the system. Since the hydrodynamic parameters of AUVs are generally not known with sufficient accuracy, the proposed controller is used for the known part of the dynamics and an adaptation algorithm is used to estimate the unknown parameters online and compensate for the rest of the plant dynamics. The proposed controller can thus adaptively handle the complete nonlinear uncertain dynamics of the plant. Simulation results are presented and discussed for a typical AUV.

1.
Yoerger
,
D. R.
, and
Slotine
,
J. J. E.
, 1985, “
Robust Trajectory Control of Underwater Vehicles
,”
IEEE J. Ocean. Eng.
0364-9059,
10
(
4
), pp.
462
470
.
2.
Healey
,
A. J.
, and
Lienard
,
D.
, 1993, “
Multivariable Sliding Mode Control for Autonomous Diving and Steering of Unmanned Underwater Vehicles
,”
IEEE J. Ocean. Eng.
0364-9059,
18
(
3
), pp.
327
339
.
3.
Goheen
,
K. R.
, and
Jefferys
,
E. R.
, 1990, “
Multivariable Self-Tuning Autopilots for Autonomous and Remotely Operated Underwater Vehicles
,”
IEEE J. Ocean. Eng.
0364-9059,
15
(
3
), pp.
144
151
.
4.
Cristi
,
R.
,
Papoulias
,
F. A.
, and
Healey
,
A. J.
, 1990, “
Adaptive Sliding Mode Control of Autonomous Underwater Vehicles in Dive Plane
,”
IEEE J. Ocean. Eng.
0364-9059,
15
(
3
), pp.
152
160
.
5.
Antonelli
,
G.
,
Caccavale
,
F.
,
Chiaverini
,
S.
, and
Fusco
,
G.
, 2003, “
A Novel Adaptive Control Law for Underwater Vehicles
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
11
(
2
), pp.
221
232
.
6.
Yuh
,
J.
, 2000, “
Design and Control of Autonomous Underwater Robots: A Survey
,”
Auton. Rob.
0929-5593,
8
(
1
), pp.
7
24
.
7.
Yoerger
,
D. R.
,
Cooke
,
J. G.
, and
Slotine
,
J.-J. E.
, 1990, “
The Influence of Thruster Dynamics on Underwater Vehicle Behavior and Their Incorporation Into Control System Design
,”
IEEE J. Ocean. Eng.
0364-9059,
15
(
3
), pp.
167
178
.
8.
Whitcomb
,
L. L.
, and
Yoerger
,
D. R.
, 1999, “
Development, Comparison, and Preliminary Experimental Validation of Nonlinear Dynamic Thruster Models
,”
IEEE J. Ocean. Eng.
0364-9059,
24
(
4
), pp.
481
494
.
9.
Whitcomb
,
L. L.
, and
Yoerger
,
D. R.
, 1999, “
Preliminary Experiments in Model-Based Thruster Control for Underwater Vehicle Positioning
,”
IEEE J. Ocean. Eng.
0364-9059,
24
(
4
), pp.
495
506
.
10.
Bachmayer
,
R.
,
Whitcomb
,
L. L.
, and
Grosenbaugh
,
M. A.
, 2000, “
An Accurate Four-Quadrant Nonlinear Dynamical Model for Marine Thrusters: Theory and Experimental Validation
,”
IEEE J. Ocean. Eng.
0364-9059,
25
(
1
), pp.
146
159
.
11.
Healey
,
A. J.
,
Rock
,
S. M.
,
Cody
,
S.
,
Mikes
,
D.
, and
Brown
,
J. P.
, 1995, “
Toward an Improved Understanding of Thruster Dynamics for Underwater Vehicles
,”
IEEE J. Ocean. Eng.
0364-9059,
20
(
4
), pp.
354
361
.
12.
Barmish
,
B. R.
, 1985, “
Necessary and Sufficient Conditions for Quadratic Stabilizability of Uncertain Systems
,”
J. Optim. Theory Appl.
0022-3239,
46
(
4
), pp.
399
408
.
13.
Bernussou
,
J.
,
Peres
,
P. L. D.
, and
Geromel
,
J. C.
, 1989, “
A Linear Programming Oriented Procedure for Quadratic Stabilization of Uncertain Systems
,”
Syst. Control Lett.
0167-6911,
13
(
1
), pp.
65
72
.
14.
Geromel
,
J. C.
,
Peres
,
P. L. D.
, and
Bernussou
,
J.
, 1991, “
On Convex Parameter Space Method for Linear Control Design of Uncertain Systems
,”
SIAM J. Control Optim.
0363-0129,
29
(
2
), pp.
381
402
.
15.
Kar
,
I. N.
, and
Dasgupta
,
A.
, 1998, “
Quadratic Stabilization of a Class of Linear Systems and Its Application to Robot Control
,”
Int. J. Syst. Sci.
0020-7721,
29
(
3
), pp.
267
274
.
16.
Seraji
,
H.
, 1987, “
An Approach to Multivariable Control of Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
109
(
2
), pp.
146
154
.
17.
Kumar
,
R. P.
,
Dasgupta
,
A.
, and
Kumar
,
C. S.
, 2005, “
Real-Time Optimal Motion Planning for Autonomous Underwater Vehicles
,”
Ocean Eng.
0029-8018,
11–12
(
32
), pp.
1431
1447
.
18.
Jacobson
,
D. H.
, 1977,
Extension of Linear Quadratic Control, Optimization and Matrix Theory
,
Academic
,
New York
.
19.
Fossen
,
T. I.
, 1994,
Guidance and Control of Ocean Vehicles
,
Wiley
,
New York
.
20.
Antonelli
,
G.
,
Chiaverini
,
S.
,
Sarkar
,
N.
, and
West
,
M.
, 2001, “
Adaptive Control of an Autonomous Underwater Vehicle: Experimental Results on ODIN
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
9
(
5
), pp.
756
765
.
21.
Kim
,
J.
,
Kim
,
K.
,
Choi
,
H. S.
,
Seong
,
W.
, and Lee, K.-Y., 2002, “
Estimation of Hydrodynamic Coefficients for an AUV Using Nonlinear Observers
,”
IEEE J. Ocean. Eng.
0364-9059,
27
(
4
), pp.
830
840
.
22.
Slotine
,
J.-J. E.
, and
Li
,
W.
, 1991,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliff, NJ
.
23.
Fjellstad
,
O.-E.
, and
Fossen
,
T. I.
, 1994, “
Singularity-Free Tracking of Unmanned Underwater Vehicles in 6 DOF
,”
Proceedings of the IEEE Conference on Decision and Control
, Orlando, pp.
1128
1133
.
You do not currently have access to this content.