We consider the modeling and control of a high-displacement piezoelectric actuator system (HDPAS). An HDPAS includes a multilayer LVPZT bender actuator (MLBA) and a low-pass filter. The MLBA is subject to hysteresis, bending modes, measurement noise, and external disturbance. Because the spillover associated with a reduced-order model of the MLBA has been known to have the potential to cause the instability of the closed-loop system, a low-pass filter is applied to reduce its effect. To obtain an acceptable model for the HDPAS, a band-limited input and its corresponding output are fed into a recursive least-squares parameter estimation scheme. The resulting model is then used for a controller design, which includes three features. First, a dead-beat to its filtered switching surface is achieved. Second, the H norm of the sensitivity function between the filtered switching surface and the output disturbance is simultaneously minimized to attenuate the effect of output disturbance. Third, a switching control based on Lyapunov redesign is used to further improve the tracking accuracy. To demonstrate the effectiveness of the proposed control, the experimental results of the HDPAS by using the proposed control are compared with those by a proportional integral differential (PID) control.

1.
Palazzolo
,
A. B.
,
Jagannathan
,
S.
,
Kascak
,
A. F.
,
Montague
,
G. T.
, and
Kiraly
,
L. J.
,
1993
, “
Hybrid Active Vibration Control of Rotor Bearing Systems Using Piezoelectric Actuators
,”
ASME J. Vibr. Acoust.
,
115
, pp.
111
119
.
2.
Li
,
C. J.
,
Beigi
,
H. S. M.
,
Li
,
S.
, and
Liang
,
J.
,
1993
, “
Nonlinear Piezo-Actuator Control by Learning Self-Tuning Regulator
,”
ASME J. Dyn. Syst., Meas., Control
,
115
, pp.
720
723
.
3.
Jung
,
S. B.
, and
Kim
,
S. W.
,
1994
, “
Improvement of Scanning Accuracy of PZT Piezoelectric Actuator by Feed-Forward Model-Reference Control
,”
Precis. Eng.
,
16
(
1
), pp.
49
55
.
4.
Pota
,
H. R.
, and
Alberts
,
T. E.
,
1995
, “
Multivariable Transfer Functions for a Slewing Piezoelectric Laminate Beam
,”
ASME J. Dyn. Syst., Meas., Control
,
117
, pp.
352
359
.
5.
Yang
,
S. M.
, and
Liu
,
Y. C.
,
1995
, “
Frequency Domain Control of Flexible Beams With Piezoelectric Actuator
,”
ASME J. Dyn. Syst., Meas., Control
,
117
, pp.
541
546
.
6.
Cuttino
,
J. F.
,
Miller
, Jr.,
A. C.
, and
Schinstock
,
D. E.
,
1999
, “
Performance Optimization of a Fast Tool Servo for Single-Point Diamond Turning Machines
,”
IEEE/ASME Trans. Mechatronics
,
4
(
2
), pp.
169
179
.
7.
Choi
,
S. B.
,
Kim
,
H. K.
,
Lim
,
S. C.
, and
Park
,
Y. P.
,
2001
, “
Position Tracking Control of an Optical Pick-up Device Using Piezoelectric Actuator
,”
Int. J. Mechatronics
,
11
, pp.
691
701
.
8.
Oboe
,
R.
,
Beghi
,
A.
,
Capretta
,
P.
, and
Soldavini
,
F. C.
,
2002
, “
A Simulation and Control Design Environment for Single-Stage and Dual-Stage Hard Disk Drives
,”
IEEE/ASME Trans. Mechatronics
,
7
(
2
), pp.
161
170
.
9.
Halim
,
D.
, and
Moheimani
,
S. O. R.
,
2002
, “
Spatial H2 Control of a Piezoelectric Laminate Beam: Experimental Implementation
,”
IEEE Trans. Control Syst. Technol.
,
10
(
4
), pp.
533
546
.
10.
Robbins
,
W. P.
,
Polla
,
D. L.
, and
Glumac
,
D. E.
,
1991
, “
High-Displacement Piezoelectric Actuator Utilizing a Meander-Line Geometry—Part I: Experimental Characterization
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
38
(
5
), pp.
454
460
.
11.
Robbins
,
W. P.
,
1991
, “
High-Displacement Piezoelectric Actuator Utilizing a Meander-Line Geometry—Part II: Theory
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
38
(
5
), pp.
461
467
.
12.
Ge
,
P.
, and
Jouaneh
,
M.
,
1996
, “
Tracking Control of a Piezoceramic Actuator
,”
IEEE Trans. Control Syst. Technol.
,
4
(
3
), pp.
209
216
.
13.
Chen
,
B. M.
,
Lee
,
T. H.
,
Hang
,
C. C.
,
Guo
,
Y.
, and
Weerasooriya
,
S.
,
1999
, “
An H Almost Disturbance Decoupling Robust Controller Design for a Piezoelectric Bimorph Actuator With Hysteresis
,”
IEEE Trans. Control Syst. Technol.
,
7
(
2
), pp.
160
174
.
14.
A˙stro¨m, K. J., and Wittenmark, B., 1997, Computer-Controlled Systems—Theory and Design, Prentice-Hall Inc., 3rd ed., Englewood Cliffs, NJ.
15.
Economou
,
D.
,
Mavroidis
,
C.
,
Antoniadis
,
I.
, and
Lee
,
C.
,
2002
, “
Maximally Robust Input Preconditioning for Residual Vibration Suppression Using Low-Pass FIR Digital Filters
,”
ASME J. Dyn. Syst., Meas., Control
,
124
, pp.
85
97
.
16.
Gutierrez
,
H. M.
, and
Ro
,
P. I.
,
1998
, “
Sliding-Mode Control of a Nonlinear-Input System: Application to a Magnetically Levitated Fast-Tool Servo
,”
IEEE Trans. Ind. Electron.
,
45
(
6
), pp.
921
927
.
17.
Young
,
K. D.
,
Utkin
,
V. I.
, and
O¨zgu¨ner
,
U¨.
,
1999
, “
A Control Engineer’s Guide to Sliding Mode Control
,”
IEEE Trans. Control Syst. Technol.
,
7
(
3
), pp.
328
342
.
18.
Furuta
,
K.
, and
Pan
,
Y.
,
2000
, “
Variable Structure Control With Sliding Sector
,”
IFAC, J. Automatica
,
36
(
3
), pp.
211
228
.
19.
Su
,
W. C.
, and
Tsai
,
C. C.
,
2001
, “
Discrete-Time VSS Temperature Control for a Plastic Extrusion Process With Water Cooling Systems
,”
IEEE Trans. Control Syst. Technol.
,
9
(
4
), pp.
618
623
.
20.
Hwang
,
C. L.
,
2002
, “
Robust Discrete Variable Structure Control With Finite-Time Approach to Switching Surface
,”
IFAC, J. Automatica
,
38
(
1
), pp.
167
175
.
21.
Goodwin, G. C., and Sin, K. S., 1984, Adaptive Filtering Prediction and Control, Prentice-Hall, Englewood Cliffs, NJ.
22.
Vidyasagar, M., 1985, Control System Synthesis—A Factorization Approach, MIT Press, Cambridge, MA.
23.
Francis, B. A., 1987, A Course in H∞ Control Theory. Lecture Notes in Control and Information Sciences, Springer-Verlag Berlin, Heidelberg.
24.
Hwang
,
C. L.
, and
Chen
,
B. S.
,
1988
, “
Adaptive Control of Optimal Model Matching in H-Norm Space
,”
IEE Proc.-D: Control Theory Appl.
,
135
(
4
),
295
301
.
You do not currently have access to this content.