In this paper, we aim for an improved understanding of the causes for torsional vibrations that appear in rotary drilling systems used for the exploration of oil and gas. For this purpose, an experimental drill-string setup is considered. In that system, torsional vibrations with and without stick-slip are observed in steady state. In order to obtain a predictive model, a discontinuous static friction model is proposed. The steady-state behavior of the drill-string system is analyzed both numerically and experimentally. A comparison of numerical and experimental bifurcation diagrams indicates the predictive quality of the model. Moreover, specific friction model characteristics can be linked to the existence of torsional vibrations with and without stick-slip.

1.
Jansen, J. D., 1993, “Nonlinear Dynamics of Oil-Well Drill-Strings,” Ph.D. thesis, Delft University Press, The Netherlands.
2.
Jansen
,
J. D.
, and
van de Steen
,
L.
,
1995
, “
Active Damping of Self-Excited Torsional Vibrations in Oil Well Drillstrings
,”
J. Sound Vib.
,
179
(
4
), pp.
647
668
.
3.
Leine, R. I., 2000, “Bifurcations in Discontinuous Mechanical Systems of Filippov-Type,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
4.
Leine
,
R. I.
,
van Campen
,
D. H.
, and
Keultjes
,
W. J. G.
,
2002
, “
Stick-Slip Whirl Interaction in Drillstring Dynamics
,”
ASME J. Vibr. Acoust.
,
124
, pp.
209
220
.
5.
Van den Steen, L., 1997, “Suppressing Stick-Slip-Induced Drill-String Oscillations: A Hyper Stability Approach,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
6.
Brett
,
J. F.
,
1992
, “
The Genesis of Torsional Drillstring Vibrations
,”
SPEDE
,
7
(
3
), pp.
168
174
.
7.
Kust, O., 1998, “Selbsterregte Drehschwingungen in Schlanken Torsionsstra¨ngen: Nichtlineare Dynamik und Regelung,” Ph.D. thesis, Techincal University Hamburg-Harburg, Germany.
8.
Cunningham
,
R. A.
,
1968
, “
Analysis of Downhole Measurements of Drill String Forces and Motions
,”
ASME J. Eng. Ind.
,
90
, pp.
208
216
.
9.
Tucker
,
R. W.
, and
Wang
,
C.
,
1999
, “
An Integrated Model for Drill-String Dynamics
,”
J. Sound Vib.
,
224
(
1
), pp.
123
165
.
10.
Brockley
,
C. A.
,
Cameron
,
R.
, and
Potter
,
A. F.
,
1967
, “
Friction-Induced Vibration
,”
ASME J. Lubr. Technol.
,
89
, pp.
101
108
.
11.
Brockley
,
C. A.
, and
Ko
,
P. L.
,
1970
, “
Quasi-Harmonic Friction-Induced Vibration
,”
ASME J. Lubr. Technol.
,
92
, pp.
550
556
.
12.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos; Part I: Mechanics of Contact and Friction
,”
Appl. Mech. Rev.
,
47
(
7
), pp.
209
226
.
13.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos; Part II: Dynamics and Modeling
,”
Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
.
14.
Krauter
,
A. I.
,
1981
, “
Generation of Squeal/Chatter in Water-Lubricated Elastomeric Bearings
,”
ASME J. Lubr. Technol.
,
103
, pp.
406
413
.
15.
Leonard, W., 2001, Control of Electrical Drives, Springer-Verlag, Berlin.
16.
Hensen, R. H. A., 2002, Controlled Mechanical Systems with Friction, Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
17.
Hensen
,
R. H. A.
,
Angelis
,
G. Z.
,
Molengraft v. d.
,
M. J. G.
,
Jager d.
,
A. G.
, and
Kok
,
J. J.
,
2000
, “
Gray-Box Modeling of Friction: An Experimental Case-Study
,”
Eur. J. Control
,
6
(
3
), pp.
258
267
.
18.
Narendra
,
K. S.
, and
Parthasarathy
,
K.
,
1990
, “
Identification and Control of Dynamical Systems Using Neural Networks
,”
IEEE Trans. Neural Netw.
,
1
, pp.
4
27
.
19.
Armstrong-He´louvry
,
B.
, and
Amin
,
B.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.
20.
Leonov
,
A. I.
,
1990
, “
On the Dependance of Friction Force on Sliding Velocity in the Theory of Adhesive Friction of Elastomers
,”
Wear
,
141
, pp.
137
145
.
21.
Ascher, U. M., Mattheij, R. M. M., and Russell, D. R., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, Philadelphia, 1995.
22.
Parker, T. S., and Chua, L. O., 1989, Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, Berlin.
23.
Sastry, S., 1999, Nonlinear Systems, Springer-Verlag, New York.
24.
Leine
,
R. I.
, and
van Campen
,
D. H.
,
2004
, “
Discontinuous Fold Bifurcations
,”
Syst. Anal. Model. Simul.
,
43
(
3
), pp.
321
332
.
25.
Van de Wouw
,
N.
, and
Leine
,
R. I.
,
2004
, “
Attractivity of Equilibrium Sets of Systems With Dry Friction
,”
Nonlinear Dyn.
,
35
, pp.
19
39
.
You do not currently have access to this content.