This paper proposes an actuator in the magnetic levitation system using a permanent magnet and an electromagnet. In this system, the gravity force of the masses is supported by a strong permanent magnet in which two identical poles face each other. The vibration due to external disturbances is controlled by use of the electromagnet by changing magnetic fluxes of one of the permanent magnets. The analytical expressions for obtaining the levitation force, spring constant, and the control force versus the electric current in the electromagnet were derived using the equation of the electromagnetic theory. Numerical simulations under the control using the optimal regulator for the magnetically levitated body were carried out. To verify the present theoretical results, experimental results were also obtained.

This content is only available via PDF.
You do not currently have access to this content.