A mathematical model for a six-axle locomotive is developed to investigate its dynamic response on tangent track due to vertical and/or lateral track irregularities. The model represents the locomotive as a system of thirty-nine degrees of freedom. The nonlinearities considered in the model are primarily associated with stiffness and damping characteristics of the primary suspension system. The transient and steady-state responses of the locomotive are obtained for the linear and nonlinear primary suspension systems. The response time-histories of the locomotive obtained by integrating the generalized equations of motion are presented. The potential uses of the model are indicated for studying the influence of different design parameters and predicting subsequent dynamic response.

This content is only available via PDF.
You do not currently have access to this content.