Rapid advancement of 3D sensing techniques has led to dense and accurate point cloud of an object to be readily available. The growing use of such scanned point sets in product design, analysis, and manufacturing necessitates research on direct processing of point set surfaces. In this paper, we present an approach that enables the direct layered manufacturing of point set surfaces. This new approach is based on adaptive slicing of moving least squares (MLS) surfaces. Salient features of this new approach include the following: (1) It bypasses the laborious surface reconstruction and avoids model conversion induced accuracy loss. (2) The resulting layer thickness and layer contours are adaptive to local curvatures, and thus it leads to better surface quality and more efficient fabrication. (3) The curvatures are computed from a set of closed formula based on the MLS surface. The MLS surface naturally smoothes the point cloud and allows upsampling and downsampling, and thus it is robust even for noisy or sparse point sets. Experimental results on both synthetic and scanned point sets are presented.

1.
Liu
,
G. H.
,
Wong
,
Y. S.
,
Zhang
,
Y. F.
, and
Loh
,
H. T.
, 2003, “
Error Based Segmentation of Cloud Data for Direct Rapid Prototyping
,”
Comput.-Aided Des.
0010-4485,
35
(
7
), pp.
633
645
.
2.
Wu
,
Y. F.
,
Wong
,
Y. S.
,
Loh
,
H. T.
, and
Zhang
,
Y. F.
, 2004, “
Modelling Cloud Data Using an Adaptive Slicing Approach
,”
Comput.-Aided Des.
0010-4485,
36
(
3
), pp.
231
240
.
3.
Shin
,
H.
,
Park
,
S.
, and
Park
,
E.
, 2004, “
Direct Slicing of a Point Set Model for Rapid Prototyping
,”
Proceedings of CAD’04
,
Pattaya, Thailand
, May.
4.
Saravana
,
K. G.
,
Kalra
,
P. K.
, and
Dhande
,
S. G.
, 2004, “
Direct Layered Manufacturing of Point Sampled Geometry
,”
Int. J. Manufacturing Technology & Management
,
6
(
6
), pp.
534
549
.
5.
Mitra
,
N. J.
,
Nguyen
,
A.
, and
Guibas
,
L. J.
, 2004, “
Estimating Surface Normals in Noisy Point Cloud Data
,”
Int. J. Comput. Geom. Appl.
0218-1959,
14
(
4–5
), pp.
261
276
.
6.
Surazhsky
,
T.
,
Magid
,
E.
,
Soldea
,
O.
,
Elber
,
G.
, and
Rivlin
,
E.
, 2003, “
A Comparison of Gaussian and Mean Curvatures Estimation Methods on Triangular Meshes
,”
2003 IEEE International Conference on Robotics & Automation (ICRA2003)
, pp.
1021
1026
.
7.
Kulkarni
,
P.
,
Marsan
,
A.
, and
Dutta
,
D.
, 2000, “
A Review of Process Planning Techniques in Layered Manufacturing
,”
Rapid Prototyping J.
1355-2546,
6
(
1
), pp.
18
35
.
8.
Pandey
,
P. M.
,
Reddy
,
N. V.
, and
Dhande
,
S. G.
, 2003, “
Slicing Procedures in Layered Manufacturing: A Review
,”
Rapid Prototyping J.
1355-2546,
9
(
5
), pp.
274
288
.
9.
Kulkarni
,
P.
, and
Dutta
,
D.
, 1996, “
An Accurate Slicing Procedure for Layered Manufacturing
,”
CAD
0010-4485,
28
(
9
), pp.
683
697
.
10.
Qian
,
X.
, and
Dutta
,
D.
, 2001, “
Feature Based Fabrication in Layered Manufacturing
,”
ASME J. Mech. Des.
1050-0472,
123
(
3
), pp.
337
345
.
11.
Pauly
,
M.
,
Keiser
,
R.
,
Kobbelt
,
L. P.
, and
Gross
,
M.
, 2003, “
Shape Modelling with Point-Sampled Geometry
,”
ACM Trans. Graphics
0730-0301,
22
(
3
), pp.
641
650
.
12.
Kobbelt
,
L.
, and
Botsch
,
M.
, 2004, “
A Survey of Point-based Techniques in Computer Graphics
,”
Comput. Graphics
0097-8493,
28
(
6
), pp.
801
814
.
13.
Levin
,
D.
, 1998, “
The Approximation Power of Moving Least-Squares
,”
Math. Comput.
0025-5718,
67
, pp.
1517
1531
.
14.
Levin
,
D.
, 2003, “
Mesh-Independent Surface Interpolation
,”
Geometric Modelling for Scientific Visualization
,
G.
Brunnett
,
B.
Hamann
,
H.
Muller
, and
L.
Linsen
, eds.,
Springer-Verlag
,
Berlin
, pp.
37
49
.
15.
Amenta
,
N.
, and
Kil
,
Y. J.
, 2004, “
Defining Point-Set Surfaces
,”
ACM Trans. Graphics
0730-0301,
23
(
3
), pp.
264
270
.
16.
Amenta
,
N.
, and
Kil
,
Y. J.
, 2004, “
The Domain of a Point Set Surface
,”
Eurographics Workshop on Point-based Graphics
, pp.
139
147
.
17.
Dey
,
T. K.
,
Goswami
,
S.
, and
Sun
,
J.
, 2005, “
Extremal Surface Based Projections Converge and Reconstruct With Isotopy
,” Technical Report No. OSU-CISRC-4–05-TR25.
18.
Dey
,
T. K.
, and
Sun
,
J.
, 2005, “
Adaptive MLS Surfaces for Reconstruction with Guarantees
,”
Proceeding of the Eurographics Symposium on Geometry Processing
, pp.
43
52
.
19.
Katz
,
S.
,
Tal
,
A.
, and
Basri
,
R.
, 2007, “
Direct Visibility of Point Sets
,”
ACM Trans. Graphics
0730-0301,
26
(
3
),
24:1
24:11
.
20.
Pauly
,
M.
, 2003, “
Point Primitives for Interactive Modeling and Processing of 3D Geometry
,” Ph.D. thesis, Computer Science Department, ETH Zurich, Zurich, Switzerland.
21.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
, 1992, “
Surface Reconstruction From Unorganized Points
,”
Comput. Graphics
0097-8493,
26
(
2
), pp.
71
78
.
22.
Goldman
,
R.
, 2005, “
Curvature Formulas for Implicit Curves and Surfaces
,”
Comput. Aided Geom. Des.
0167-8396,
22
(
7
), pp.
632
658
.
23.
de Berg
,
M.
,
van Kreveld
,
M.
,
Overmars
,
M.
, and
Schwarzkopf
,
O.
, 1997,
Computational Geometry: Algorithms and Applications
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.