Abstract

Identifying and eliminating conflicts and redundancies between geometric constraints is crucial for effective constraint resolving in engineering design. This research proposes a graph-based conflict detection and resolution scheme for geometric constraint systems with both equality and inequality constraints based on numerical methods using a pruning and backtracking strategy. Initially, the minimum subset of conflicting constraints is detected by traversing all connected subgraphs of the original constraint graph in a pruning manner. The traversal process is encoded in a directed acyclic graph (DAG). The solvability of each constraint subgraph is determined by solving its equivalent algebraic system using variants of the Levenberg–Marquardt (LM) algorithm (Ma, 2008, “A Globally Convergent Levenberg–Marquardt Method for the Least l2-Norm Solution of Nonlinear Inequalities,” Appl. Math. Comput., 206(1), pp. 133–140; Amini et al., 2018, “An Efficient Levenberg–Marquardt Method With a New LM Parameter for Systems of Nonlinear Equations,” Optimization, 67(5), pp. 637–650) and verifying the solution. Inconsistencies between conflicting constraints are eliminated by modifying or discarding constraints recommended by a set of criteria. Finally, the resolution is validated by backtracking ancestor subgraphs along the paths of the DAG. Experimental results demonstrate the effectiveness of the proposed framework in handling inconsistent overconstrainedness between geometric constraints in various parametric forms, including those arising from violations of geometric rules or theorems.

References

1.
Lee
,
K.-Y.
,
Kwon
,
O. H.
,
Lee
,
J.-Y.
, and
Kim
,
T.-W.
,
2003
, “
A Hybrid Approach to Geometric Constraint Solving With Graph Analysis and Reduction
,”
Adv. Eng. Software
,
34
(
2
), pp.
103
113
.
2.
Li
,
Y.
,
Wu
,
X.
,
Chrysathou
,
Y.
,
Sharf
,
A.
,
Cohen-Or
,
D.
, and
Mitra
,
N. J.
,
2011
, “
GlobFit: Consistently Fitting Primitives by Discovering Global Relations
,”
ACM Trans. Graphics
,
30
(
4
), p.
52
.
3.
Zhang
,
C.
,
Yang
,
L.
,
Xu
,
L.
,
Wang
,
G.
, and
Wang
,
W.
,
2019
, “
Real-Time Editing of Man-Made Mesh Models Under Geometric Constraints
,”
Comput. Graphics
,
82
, pp.
174
182
.
4.
Sridhar
,
N.
,
Agrawal
,
R.
, and
Kinzel
,
G. L.
,
1996
, “
Algorithms for the Structural Diagnosis and Decomposition of Sparse, Underconstrained Design Systems
,”
Comput. Aided Des.
,
28
(
4
), pp.
237
249
.
5.
Light
,
R.
, and
Gossard
,
D.
,
1982
, “
Modification of Geometric Models Through Variational Geometry
,”
Comput. Aided Des.
,
14
(
4
), pp.
209
214
.
6.
Foufou
,
S.
,
Michelucci
,
D.
, and
Jurzak
,
J.-P.
,
2005
, “
Numerical Decomposition of Geometric Constraints
,”
Proceedings of the Ninth ACM Symposium on Solid and Physical Modeling
,
Cambridge, MA
,
June 13–15
, pp.
143
151
.
7.
Michelucci
,
D.
, and
Foufou
,
S.
,
2006
, “
Geometric Constraint Solving: The Witness Configuration Method
,”
Comput. Aided Des.
,
38
(
4
), pp.
284
299
.
8.
Hoffman
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
,
2001
, “
Decomposition Plans for Geometric Constraint Systems, Part I: Performance Measures for CAD
,”
J. Symb. Comput.
,
31
(
4
), pp.
367
408
.
9.
Hoffman
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
,
2001
, “
Decomposition Plans for Geometric Constraint Problems, Part II: New Algorithms
,”
J. Symb. Comput.
,
31
(
4
), pp.
409
427
.
10.
Jermann
,
C.
,
Trombettoni
,
G.
,
Neveu
,
B.
, and
Mathis
,
P.
,
2006
, “
Decomposition of Geometric Constraint Systems: A Survey
,”
Int. J. Comput. Geom. Appl.
,
16
(
5
), pp.
379
414
.
11.
Joan-Arinyo
,
R.
, and
Soto
,
A.
,
1997
, “A Ruler-and-Compass Geometric Constraint Solver,”
Product Modeling for Computer Integrated Design and Manufacture IFIP Advances in Information and Communication Technology
,
M. J.
Pratt
,
R. D.
Sriram
, and
M. J.
Wozny
, eds.,
Springer
,
Boston, MA
, pp.
384
393
.
12.
Joan-Arinyo
,
R.
, and
Soto
,
A.
,
1997
, “
A Correct Rule-Based Geometric Constraint Solver
,”
Comput. Graphics
,
21
(
5
), pp.
599
609
.
13.
Ait-Aoudia
,
S.
,
Jegou
,
R.
, and
Michelucci
,
D.
,
2014
, “Reduction of Constraint Systems.”
14.
Hoffmann
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
,
1997
, “
Finding Solvable Subsets of Constraint Graphs
,”
Principles and Practice of Constraint Programming-CP97: Third International Conference, CP97 Linz Proceedings 3
,
Austria
,
Oct. 29–Nov. 1
, pp.
463
477
.
15.
Hu
,
H.
,
Kleiner
,
M.
, and
Pernot
,
J.-P.
,
2017
, “
Over-Constraints Detection and Resolution in Geometric Equation Systems
,”
Comput. Aided Des.
,
90
, pp.
84
94
.
16.
Zou
,
Q.
, and
Feng
,
H.-Y.
,
2020
, “
A Decision-Support Method for Information Inconsistency Resolution in Direct Modeling of CAD Models
,”
Adv. Eng. Inf.
,
44
, p.
101087
.
17.
Podgorelec
,
D.
,
Žalik
,
B.
, and
Domiter
,
V.
,
2008
, “
Dealing With Redundancy and Inconsistency in Constructive Geometric Constraint Solving
,”
Adv. Eng. Software
,
39
(
9
), pp.
770
786
.
18.
Ma
,
C.
,
2008
, “
A Globally Convergent Levenberg–Marquardt Method for the Least l2-Norm Solution of Nonlinear Inequalities
,”
Appl. Math. Comput.
,
206
(
1
), pp.
133
140
.
19.
Amini
,
K.
,
Rostami
,
F.
, and
Caristi
,
G.
,
2018
, “
An Efficient Levenberg–Marquardt Method With a New LM Parameter for Systems of Nonlinear Equations
,”
Optimization
,
67
(
5
), pp.
637
650
.
20.
Ruszczynski
,
A.
,
2011
,
Nonlinear Optimization
,
Princeton University Press
,
Princeton, NJ
.
21.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
, “Numerical Optimization,”
Springer Series in Operations Research and Financial Engineering
,
J.
Nocedal
, and
S. J.
Wright
, eds.,
Springer Nature
, pp.
1
664
.
22.
Fan
,
J.-Y.
,
2003
, “
A Modified Levenberg–Marquardt Algorithm for Singular System of Nonlinear Equations
,”
J. Comput. Math.
,
21
, pp.
625
636
.
23.
Mayne
,
D. Q.
,
Polak
,
E.
, and
Heunis
,
A. J.
,
1981
, “
Solving Nonlinear Inequalities in a Finite Number of Iterations
,”
J. Optim. Theory Appl.
,
33
(
2
), pp.
207
221
.
24.
Sahba
,
M.
,
1985
, “
On the Solution of Nonlinear Inequalities in a Finite Number of Iterations
,”
Numer. Math.
,
46
(
2
), pp.
229
236
.
25.
Daniel
,
J. W.
,
1973
, “
Newton’s Method for Nonlinear Inequalities
,”
Numer. Math.
,
21
(
5
), pp.
381
387
.
26.
Garcia-Palomares
,
U. M.
, and
Restuccia
,
A.
,
1981
, “
A Global Quadratic Algorithm for Solving a System of Mixed Equalities and Inequalities
,”
Math. Program.
,
21
(
1
), pp.
290
300
.
27.
Chen
,
C.
, and
Mangasarian
,
O. L.
,
1996
, “
A Class of Smoothing Functions for Nonlinear and Mixed Complementarity Problems
,”
Comput. Optim. Appl.
,
5
(
2
), pp.
97
138
.
28.
Sun
,
D.
, and
Qi
,
L.
,
2001
, “
Solving Variational Inequality Problems via Smoothing-Nonsmooth Reformulations
,”
J. Comput. Appl. Math.
,
129
(
1
), pp.
37
62
.
29.
He
,
C.
, and
Ma
,
C.
,
2010
, “
A Smoothing Self-Adaptive Levenberg–Marquardt Algorithm for Solving System of Nonlinear Inequalities
,”
Appl. Math. Comput.
,
216
(
10
), pp.
3056
3063
.
30.
Mansour
,
Y.
,
1997
, “
Pessimistic Decision Tree Pruning Based on Tree Size
,”
International Conference on Machine Learning
,
San Francisco, CA
.
31.
Newman
,
M. E. J.
,
2010
, “Mathematics of Networks: An Introduction to the Mathematical Tools Used in the Study of Networks, Tools That will be Important to Many Subsequent Developments,”
Networks: An Introduction
,
M.
Newman
, ed.,
Oxford University Press
,
Oxford, UK
, pp.
109
167
.
32.
Moinet
,
M.
,
Mandil
,
G.
, and
Serre
,
P.
,
2014
, “
Defining Tools to Address Over-Constrained Geometric Problems in Computer Aided Design
,”
Comput. Aided Des.
,
48
, pp.
42
52
.
33.
Schnabel
,
R.
,
Wahl
,
R.
, and
Klein
,
R.
,
2007
, “
Efficient RANSAC for Point-Cloud Shape Detection
,”
Comput. Graphics Forum
,
26
(
2
), pp.
214
226
.
34.
Mu
,
A.
,
Liu
,
Z.
,
Duan
,
G.
, and
Tan
,
J.
,
2024
, “
Structural Regularity Detection and Enhancement for Surface Mesh Reconstruction in Reverse Engineering
,”
Comput. Aided Des.
,
177
, p.
103780
.
35.
Yeguas
,
E.
,
Marín-Jiménez
,
M. J.
,
Muñoz-Salinas
,
R.
, and
Medina-Carnicer
,
R.
,
2014
, “
Conflict-Based Pruning of a Solution Space Within a Constructive Geometric Constraint Solver
,”
Appl. Intell.
,
41
(
3
), pp.
897
922
.
You do not currently have access to this content.