Abstract

While digital twin (DT) has made significant strides in recent years, much work remains to be done in the research community and in the industry to fully realize the benefits of DT. A group of 25 industry professionals, US federal government researchers, and academics came together from 11 different institutions and organizations to identify 14 key thrusts and 3 cross-cutting areas for further DT research and development (R&D). This article presents our vision for the future of DT R&D, provides historical context for DT’s birth and growth as a field, provides examples of DTs in use in industry and the lab, and discusses the current state of DT research. We hope that this article serves as a nucleation point for future R&D efforts and provides the community with shared vision and trajectory to collectively advance DT so that society can more rapidly see the benefits of DT.

References

1.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
, “Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems,”
Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches
,
F.J.
Kahlen
,
S.
Flumerfelt
, and
A.
Alves
, eds.,
Springer Cham
,
New York City
, pp.
85
113
.
2.
He
,
B.
,
Song
,
Y.
, and
Wang
,
Y.
,
2021
, “
Digital Twin-Driven Design and Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
030301
.
3.
Hu
,
Z.-Z.
,
Lin
,
J.-R.
,
Zhang
,
J.
, and
Wang
,
Q.
,
2021
, “
Digital Twin Technology in the Architectural, Engineering and Construction (AEC) Industry
,”
Adv. Civ. Eng.
,
2021
(
1
).
4.
Kuo
,
Y.-H.
,
Pilati
,
F.
,
Qu
,
T.
, and
Huang
,
G. Q.
,
2021
, “
Digital Twin-Enabled Smart Industrial Systems: Recent Developments and Future Perspectives
,”
Int. J. Comput. Integr. Manuf.
,
34
(
7–8
), pp.
685
689
.
5.
Hakiri
,
A.
,
Yahia
,
S. B.
,
Gokhale
,
A. S.
, and
Mellouli
,
N.
,
2024
, “
Special Issue on Digital Twin for Future Networks and Emerging IoT Applications (DT4IoT)
,”
Future Generation Computer Systems
,
161
, pp.
81
84
.
6.
Hu
,
C.
,
Hu
,
Z.
,
Zheng
,
P.
,
Kim
,
T.
,
González
,
V. A.
, and
San
,
O.
,
2023
, “
Special Issue on Advanced Optimization Enabling Digital Twin Technology
,”
Struct. Multidiscipl. Optim.
,
66
(
10
), p.
218
.
7.
Leng
,
J.
,
Lu
,
W. W.
, and
Xu
,
X.
,
2021
, “
Digital Twin Technology
,”
Scientific Reports
,
13
(
1
).
8.
National Science Foundation
,
2024
, “
Networking and Information Technology Research and Development Request for Information on Digital Twins Research and Development
,”
Federal Register
(89 FR 51554, Document Number: 2024-13379)
, pp.
51554
51555
.
9.
National Academies of Sciences, Engineering, and Medicine
,
2023
,
Foundational Research Gaps and Future Directions for Digital Twins
,
National Academies Press
,
Washington, DC
.
10.
AIAA Digital Engineering Integration Committee
,
2020
,
“Digital Twin: Definition & Value: An AIAA and AIA Position Paper
,
” American Institute of Aeronautics and Astronautics
,
Reston, VA
. https://www.aia-aerospace.org/wp-content/uploads/Digital-Twin-Institute-Position-Paper-December-2020-1.pdf
11.
Grieves
,
M.
,
2022
, “
Intelligent Digital Twins and the Development and Management of Complex Systems
,”
Digital Twin
,
2
(
8
), pp.
1
18
.
12.
Singh
,
M.
,
Srivastava
,
R.
,
Fuenmayor
,
E.
,
Kuts
,
V.
,
Qiao
,
Y.
,
Murray
,
N.
, and
Devine
,
D.
,
2022
, “
Applications of Digital Twin Across Industries: A Review
,”
Appl. Sci.
,
12
(
11
), p.
5727
.
13.
Panchal
,
J. H.
, and
Wang
,
Z.
,
2023
, “
Design of Next-Generation Automotive Systems: Challenges and Research Opportunities
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060818
.
14.
Grieves
,
M. W.
,
2023
, “Digital Twins: Past, Present, and Future,”
The Digital Twin
,
N.
Crespi
,
A. T.
Drobot
, and
R.
Minerva
, eds.,
Springer
,
New York City
, pp.
97
121
.
15.
Singh
,
M.
,
Fuenmayor
,
E.
,
Hinchy
,
E. P.
,
Qiao
,
Y.
,
Murray
,
N.
, and
Devine
,
D.
,
2021
, “
Digital Twin: Origin to Future
,”
Appl. Syst. Innovation
,
4
(
2
), p.
36
.
16.
Piascik
,
B.
,
Vickers
,
J.
,
Lowry
,
D.
,
Scotti
,
S.
,
Stewart
,
J.
, and
Calomino
,
A.
,
2012
,
Materials, Structures, Mechanical Ssystems, and Manufacturing Roadmap
, Technology Area 12,
National Aeronautics and Space Administration
, Huntsville, AL, Technical Report No.20240002901.
17.
Tao
,
F.
, and
Qi
,
Q.
,
2019
, “
Make More Digital Twins
,”
Nature
,
573
(
7775
), pp.
490
491
.
18.
Augustine
,
P.
,
2020
, “The Industry Use Cases for the Digital Twin Idea,”
Advances in Computers
, Vol.
117
,
S.
Namasudra
, ed.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
79
105
.
19.
Correa
,
F.
,
2022
, “
Bim, Twin and Between: Conceptual Engineering Approach to Formalize Digital Twins in Construction
,” ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, Vol. 39, Bogotá, Colombia, July 13–15,
IAARC Publications
, pp.
475
482
.
20.
Li
,
L.
,
Aslam
,
S.
,
Wileman
,
A.
, and
Perinpanayagam
,
S.
,
2021
, “
Digital Twin in Aerospace Industry: A Gentle Introduction
,”
IEEE Access
,
10
, pp.
9543
9562
.
21.
Grieves
,
M.
,
2022
, “Physical Twins, Digital Twins, and the Apollo Myth,” https://www.linkedin.com/pulse/physical-twins-digital-apollo-myth-michael-grieves.
22.
Hernández
,
L.
, and
Hernandez
,
S.
,
1997
, “
Application of Digital 3d Models on Urban Planning and Highway Design
,”
WIT Trans. Built Environ.
,
33
(
12
), pp.
391
402
. ISSN 1743-3509
23.
Shafto
,
M.
,
Conroy
,
M.
,
Doyle
,
R.
,
Glaessgen
,
E.
,
Kemp
,
C.
,
LeMoigne
,
J.
, and
Wang
,
L.
,
2010
,
Draft Modeling, Simulation, Information, Technology & Processing Roadmap: Technology Area 11
,
National Aeronautics and Space Administration
.
24.
Yin
,
Z. H.
, and
Wang
,
L.
,
2020
, “
Application and Development Prospect of Digital Twin Technology in Aerospace
,”
IFAC-PapersOnLine
,
53
(
5
), pp.
732
737
.
25.
Hu
,
W.
,
Zhang
,
T.
,
Deng
,
X.
,
Liu
,
Z.
, and
Tan
,
J.
,
2021
, “
Digital Twin: A State-of-the-Art Review of Its Enabling Technologies, Applications and Challenges
,”
J. Intell. Manuf. Spec. Equip.
,
2
(
1
), pp.
1
34
.
26.
Glaessgen
,
E.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and US Air Force Vehicles
,” 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, Honolulu, HI, Apr. 23–26, p.
1818
.
27.
Griffin
,
M.
,
Baldwin
,
K.
,
Stanley
,
J.
,
Kewley
,
R.
, and
Bray
,
W.
,
2018
,
Department of Defense Digital Engineering Strategy
,
US Department of Defense
,
Arlington, VA
.
28.
Office of the Under Secretary of Defense for Research and Engineering
,
2023
,
DoD instruction 5000.97, Digital Engineering
.
29.
Object Management Group, Inc.
,
2024
, Digital Twin Consortium Home, https://www.digitaltwinconsortium.org/
30.
Object Management Group, Inc.
,
2024
, Definition of a Digital Twin, https://www.digitaltwinconsortium.org/initiatives/the-definition-of-a-digital-twin/
31.
Barricelli
,
B. R.
,
Casiraghi
,
E.
, and
Fogli
,
D.
,
2019
, “
A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications
,”
IEEE Access
,
7
, p.
167653
.
32.
Juarez
,
M. G.
,
Botti
,
V. J.
, and
Giret
,
A. S.
,
2021
, “
Digital Twins: Review and Challenges
,”
J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
030802
.
33.
Tao
,
F.
,
Sui
,
F.
,
Liu
,
A.
,
Qi
,
Q.
,
Zhang
,
M.
,
Song
,
B.
,
Guo
,
Z.
,
Lu
,
S. C.-Y.
, and
Nee
,
A. Y.
,
2019
, “
Digital Twin-Driven Product Design Framework
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3935
3953
.
34.
Lo
,
C.
,
Chen
,
C.-H.
, and
Zhong
,
R. Y.
,
2021
, “
A Review of Digital Twin in Product Design and Development
,”
Adv. Eng. Inform.
,
48
, p.
101297
.
35.
de Andrade
,
M. A. N.
,
Lepikson
,
H. A.
, and
Machado
,
C. A. T.
,
2021
, “
A New Framework and Methodology for Digital Twin Development
,” 2021 14th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brazil, Aug. 15–18,
IEEE
, pp.
134
138
.
36.
Fang
,
X.
,
Wang
,
H.
,
Liu
,
G.
,
Tian
,
X.
,
Ding
,
G.
, and
Zhang
,
H.
,
2022
, “
Industry Application of Digital Twin: From Concept to Implementation
,”
Int. J. Adv. Manuf. Technol.
,
121
(
7
), pp.
4289
4312
.
37.
Schützer
,
K.
,
de Andrade Bertazzi
,
J.
,
Sallati
,
C.
,
Anderl
,
R.
, and
Zancul
,
E.
,
2019
, “
Contribution to the Development of a Digital Twin Based on Product Lifecycle to Support the Manufacturing Process
,”
Procedia CIRP
,
84
, pp.
82
87
.
38.
Bickford
,
J.
,
Van Bossuyt
,
D. L.
,
Beery
,
P.
, and
Pollman
,
A.
,
2020
, “
Operationalizing Digital Twins Through Model-Based Systems Engineering Methods
,”
Syst. Eng.
,
23
(
6
), pp.
724
750
.
39.
Lee
,
E. B. K.
,
Van Bossuyt
,
D. L.
, and
Bickford
,
J. F.
,
2021
, “
Digital Twin-Enabled Decision Support in Mission Engineering and Route Planning
,”
Systems
,
9
(
4
), p.
82
.
40.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A. Y.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
.
41.
Dalibor
,
M.
,
Jansen
,
N.
,
Rumpe
,
B.
,
Schmalzing
,
D.
,
Wachtmeister
,
L.
,
Wimmer
,
M.
, and
Wortmann
,
A.
,
2022
, “
A Cross-Domain Systematic Mapping Study on Software Engineering for Digital Twins
,”
J. Syst. Software
,
193
, p.
111361
.
42.
Ibrahim
,
M.
,
Rjabtšikov
,
V.
, and
Gilbert
,
R.
,
2023
, “
Overview of Digital Twin Platforms for EV Applications
,”
Sensors
,
23
(
3
), p.
1414
.
43.
Madni
,
A. M.
,
Madni
,
C. C.
, and
Lucero
,
S. D.
,
2019
, “
Leveraging Digital Twin Technology in Model-Based Systems Engineering
,”
Systems
,
7
(
1
), p.
7
.
44.
Ledford
,
A.
,
Harris
,
G.
,
Askew
,
S.
, and
Purdy
,
G.
,
2024
, “
Application of Data Element Mapping and Analysis for System Definition to Enable Model-Based Systems Engineering
,”
Syst. Eng.
,
28
(
1
).
45.
Chatterjee
,
A.
,
Helbig
,
C.
,
Malak
,
R.
, and
Layton
,
A.
,
2023
, “
A Comparison of Graph-Theoretic Approaches for Resilient System of Systems Design
,”
J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
030906
.
46.
Jackson
,
S.
, and
Ferris
,
T. L.
,
2013
, “
Resilience Principles for Engineered Systems
,”
Syst. Eng.
,
16
(
2
), pp.
152
164
.
47.
Smith
,
A. B.
,
2018
, “Billion-Dollar Weather and Climate Disasters,” DOI:10.25921/stkw-7w73, https://www.ncei.noaa.gov/access/billions/
48.
Van Bossuyt
,
D. L.
, and
Arlitt
,
R. M.
,
2020
, “
A Functional Failure Analysis Method of Identifying and Mitigating Spurious System Emissions From a System of Interest in a System of Systems
,”
J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
054501
.
49.
Zhang
,
W. X.
,
Wang
,
Y.
, and
Li
,
Q.
,
2014
, “
An Improved Functional Dependency Network Model for SoS Operability Analysis
,”
Appl. Mech. Mater.
,
602–605
, pp.
3355
3358
. www.scientific.net/AMM.602-605.3355
50.
Guariniello
,
C.
, and
DeLaurentis
,
D.
,
2017
, “
Supporting Design Via the System Operational Dependency Analysis Methodology
,”
Res. Eng. Des.
,
28
, pp.
53
69
.
51.
Huang
,
H.
,
Mao
,
Z.
,
Layton
,
A.
, and
Davis
,
K. R.
,
2022
, “
An Ecological Robustness Oriented Optimal Power Flow for Power Systems’ Survivability
,”
IEEE Trans. Power Syst.
,
38
(
1
), pp.
447
462
.
52.
Warrington
,
S.
, and
Layton
,
A.
,
2022
, “
Ecosystem Guidance for the Incorporation of Renewable Utilities in a Multi-use Campus Network
,”
PLoS One
,
17
(
5
), p.
e0267431
.
53.
Chatterjee
,
A.
,
Malak
,
R.
, and
Layton
,
A.
,
2022
, “
Ecology-Inspired Resilient and Affordable System of Systems Using Degree of System Order
,”
Syst. Eng.
,
25
(
1
), pp.
3
18
.
54.
Blair
,
S.
,
Hairston
,
G.
,
Banks
,
H.
,
Kaat
,
C.
,
Linsey
,
J.
, and
Layton
,
A.
,
2024
, “
Bio-inspired Human Network Diagnostics: Ecological Modularity and Nestedness as Quantitative Indicators of Human Engineered Network Function
,”
Syst. Eng.
,
27
(
5
), pp.
886
898
.
55.
Kaat
,
C.
,
Blair
,
S.
,
Layton
,
A.
, and
Linsey
,
J.
,
2024
, “
A Study of Makerspace Health and Student Tool Usage During and After the Covid-19 Pandemic
,”
Des. Sci.
,
10
(
e13
), pp.
1
27
.
56.
Liu
,
M.
,
Fang
,
S.
,
Dong
,
H.
, and
Xu
,
C.
,
2021
, “
Review of Digital Twin About Concepts, Technologies, and Industrial Applications
,”
J. Manuf. Syst.
,
58
(
Part B
), pp.
346
361
.
57.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y.
,
2018
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inf.
,
15
(
4
), pp.
2405
2415
.
58.
General Electric
,
2024
, “Ge Digital Twin Stories,” https://www.ge.com/digital/industrial-managed-services-remote-monitoring-for-iiot/
59.
Swartzendruber
,
T.
,
2024
, “What Is a Digital Twin?” https://www.ge.com/digital/blog/what-digital-twin
60.
Aghaei
,
M.
,
Moazami
,
A.
,
Lobaccaro
,
G.
, and
Cali
,
U.
, eds.,
2024
,
Digital Twin Technology for the Energy Sector Fundamentals, Advances, Challenges, and Applications
,
Elsevier
.
61.
Siemens Digital Industries Softwar2
,
2024
, “Digital Twin—Siemens Software,” https://www.sw.siemens.com/en-US/technology/digital-twin/
62.
General Electric
,
2024
, “Digital Twin Software—GE digital,” https://www.ge.com/digital/applications/digital-twin
63.
Ribeiro
,
M.
,
Luke
,
J.
,
Martin
,
S.
,
Balogun
,
E.
,
Cezar
,
G.
,
Pavone
,
M.
, and
Rajagopal
,
R.
,
2024
, “
Towards a 24/7 Carbon-Free Electric Fleet: A Digital Twin Framework
,” Volume 43: Energy Transitions toward Carbon Neutrality: Part VI. Doha, Qatar.
64.
Park
,
H.-A.
,
Byeon
,
G.
,
Son
,
W.
,
Jo
,
H.-C.
,
Kim
,
J.
, and
Kim
,
S.
,
2020
, “
Digital Twin for Operation of Microgrid: Optimal Scheduling in Virtual Space of Digital Twin
,”
Energies
,
13
(
20
), p.
5504
.
65.
Yu
,
P.
,
Ma
,
L.
,
Fu
,
R.
,
Liang
,
Y.
,
Qin
,
D.
,
Yu
,
J.
, and
Liao
,
S.
,
2023
, “
Framework Design and Application Perspectives of Digital Twin Microgrid
,”
3rd International Conference on Power Engineering (ICPE 2022), Science and Engineering Institute, China Chapter
,
Hainan Province, China
,
Dec. 9–11
.
66.
Danilczyk
,
W.
,
Sun
,
Y.
, and
He
,
H.
,
2019
, “
Angel: An Intelligent Digital Twin Framework for Microgrid Security
,” 2019 North American Power Symposium (NAPS), Wichita, KS, Oct. 13–15,
IEEE
, pp.
1
6
.
67.
Bazmohammadi
,
N.
,
Madary
,
A.
,
Vasquez
,
J. C.
,
Mohammadi
,
H. B.
,
Khan
,
B.
,
Wu
,
Y.
, and
Guerrero
,
J. M.
,
2021
, “
Microgrid Digital Twins: Concepts, Applications, and Future Trends
,”
IEEE Access
,
10
, pp.
2284
2302
.
68.
Eggebeen
,
A.
,
Vygoder
,
M.
,
Oriti
,
G.
,
Gudex
,
J.
,
Julian
,
A. L.
, and
Cuzner
,
R. M.
,
2023
, “
The Use of Digital Twins in Inverter-Based Ders to Improve Nanogrid Fault Recovery
,” 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, Oct. 29–Nov. 2,
IEEE
, pp.
734
741
.
69.
Chen
,
H.
,
Zhang
,
Z.
,
Karamanakos
,
P.
, and
Rodriguez
,
J.
,
2022
, “
Digital Twin Techniques for Power Electronics-Based Energy Conversion Systems: A Survey of Concepts, Application Scenarios, Future Challenges, and Trends
,”
IEEE Ind. Electron. Mag.
,
17
(
2
), pp.
20
36
.
70.
Wunderlich
,
A.
, and
Santi
,
E.
,
2021
, “
Digital Twin Models of Power Electronic Converters Using Dynamic Neural Networks
,” 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, July 14–17,
IEEE
, pp.
2369
2376
.
71.
Milton
,
M.
,
De La O
,
C.
,
Ginn
,
H. L.
, and
Benigni
,
A.
,
2020
, “
Controller-Embeddable Probabilistic Real-Time Digital Twins for Power Electronic Converter Diagnostics
,”
IEEE Trans. Power Electron.
,
35
(
9
), pp.
9850
9864
.
72.
Wang
,
W.
,
Wang
,
J.
,
Tian
,
J.
,
Lu
,
J.
, and
Xiong
,
R.
,
2021
, “
Application of Digital Twin in Smart Battery Management Systems
,”
Chin. J. Mech. Eng.
,
34
(
1
), p.
57
.
73.
Singh
,
S.
,
Weeber
,
M.
, and
Birke
,
K. P.
,
2021
, “
Implementation of Battery Digital Twin: Approach, Functionalities and Benefits
,”
Batteries
,
7
(
4
), p.
78
.
74.
Li
,
W.
,
Rentemeister
,
M.
,
Badeda
,
J.
,
Jöst
,
D.
,
Schulte
,
D.
, and
Sauer
,
D. U.
,
2020
, “
Digital Twin for Battery Systems: Cloud Battery Management System With Online State-of-Charge and State-of-Health Estimation
,”
J. Energy Storage
,
30
, p.
101557
.
75.
Qu
,
X.
,
Song
,
Y.
,
Liu
,
D.
,
Cui
,
X.
, and
Peng
,
Y.
,
2020
, “
Lithium-Ion Battery Performance Degradation Evaluation in Dynamic Operating Conditions Based on a Digital Twin Model
,”
Microelectron. Reliab.
,
114
, p.
113857
.
76.
Belik
,
M.
, and
Rubanenko
,
O.
,
2023
, “
Implementation of Digital Twin for Increasing Efficiency of Renewable Energy Sources
,”
Energies
,
16
(
12
), p.
4787
.
77.
Do Amaral
,
J.
,
Dos Santos
,
C.
,
Montevechi
,
J.
, and
De Queiroz
,
A.
,
2023
, “
Energy Digital Twin Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
188
, p.
113891
.
78.
Fahim
,
M.
,
Sharma
,
V.
,
Cao
,
T.-V.
,
Canberk
,
B.
, and
Duong
,
T. Q.
,
2022
, “
Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines
,”
IEEE Access
,
10
, pp.
14184
14194
.
79.
Arafet
,
K.
, and
Berlanga
,
R.
,
2021
, “
Digital Twins in Solar Farms: An Approach Through Time Series and Deep Learning
,”
Algorithms
,
14
(
5
), p.
156
.
80.
Sultanov
,
M. M.
,
Arakelyan
,
E. K.
,
Boldyrev
,
I. A.
,
Lunenko
,
V. S.
, and
Menshikov
,
P. D.
,
2021
, “
Digital Twins Application in Control Systems for Distributed Generation of Heat and Electric Energy
,”
Arch. Thermodyn.
,
42
(
2
), pp.
89
101
.
81.
Katsidoniotaki
,
E.
,
Psarommatis
,
F.
, and
Göteman
,
M.
,
2022
, “
Digital Twin for the Prediction of Extreme Loads on a Wave Energy Conversion System
,”
Energies
,
15
(
15
), p.
5464
.
82.
Jain
,
P.
,
Poon
,
J.
,
Singh
,
J. P.
,
Spanos
,
C.
,
Sanders
,
S. R.
, and
Panda
,
S. K.
,
2019
, “
A Digital Twin Approach for Fault Diagnosis in Distributed Photovoltaic Systems
,”
IEEE Trans. Power Electron.
,
35
(
1
), pp.
940
956
.
83.
Kabir
,
M. R.
,
Halder
,
D.
, and
Ray
,
S.
,
2024
, “
Digital Twins for IOT-Driven Energy Systems: A Survey
,”
IEEE Access
,
12
, pp.
177123
177143
.
84.
Strickland
,
E.
,
2024
, “
15 Graphs That Explain the State of AI in 2024: The AI Index Tracks the Generative AI Boom, Model Costs, and Responsible AI Use
,”
IEEE Spectrum
. https://spectrum.ieee.org/ai-index-2024
85.
Yang
,
W.
,
Zheng
,
Y.
, and
Li
,
S.
,
2021
, “
Application Status and Prospect of Digital Twin for on-Orbit Spacecraft
,”
IEEE Access
,
9
, p.
106489
.
86.
Tuegel
,
E.
,
2012
, “
The Airframe Digital Twin: Some Challenges to Realization
,” 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, Honolulu, HI, Apr. 23–26, p.
1812
.
87.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
(
1
), p.
154798
.
88.
Hochhalter
,
J.
,
Leser
,
W. P.
,
Newman
,
J. A.
,
Gupta
,
V. K.
,
Yamakov
,
V.
,
Cornell
,
S. R.
,
Willard
,
S. A.
, and
Heber
,
G.
,
2014
,
Coupling Damage-Sensing Particles to the Digital Twin Concept
,
National Aeronautics and Space Administration
, Hampton, VA. https://ntrs.nasa.gov/api/citations/20140006408/downloads/20140006408.pdf
89.
Moubray
,
A.
,
Bedard
,
P.
,
Miro
,
J.
, and
Stukes
,
R.
,
2020
, “
Transitioning a Reliability/Sustainment Model Into a Digital Twin
,” 2020 Annual Reliability and Maintainability Symposium (RAMS), Palm Springs, CA, Jan. 27–30,
IEEE
, pp.
1
7
.
90.
Phanden
,
R. K.
,
Sharma
,
P.
, and
Dubey
,
A.
,
2021
, “
A Review on Simulation in Digital Twin for Aerospace, Manufacturing and Robotics
,”
Mater. Today: Proc.
,
38
(
1
), pp.
174
178
.
91.
Liu
,
Z.
,
Meyendorf
,
N.
,
Blasch
,
E.
,
Tsukada
,
K.
,
Liao
,
M.
, and
Mrad
,
N.
,
2025
, “
The Role of Data Fusion in Predictive Maintenance Using Digital Twin
,”
Handbook of Nondestructive Evaluation 4.0
,
N.
Meyendorf
,
N.
Ida
,
R.
Singh
, and
J.
Vrana
, eds.,
AIP Publishing
, Springer, Cham.
92.
Werme
,
M.
,
Eriksson
,
T.
, and
Righard
,
T.
,
2017
, “
Maintenance Concept Optimization—A New Approach to Lora
,” 2017 Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL, Jan. 23–26,
IEEE
, pp.
1
6
.
93.
Cai
,
H.
,
Zhu
,
J.
, and
Zhang
,
W.
,
2021
, “
Quality Deviation Control for Aircraft Using Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031008
.
94.
Guo
,
J.
,
Yang
,
Z.
,
Chen
,
C.
,
Luo
,
W.
, and
Hu
,
W.
,
2021
, “
Real-Time Prediction of Remaining Useful Life and Preventive Maintenance Strategy Based on Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031003
.
95.
Qian
,
W.
,
Guo
,
Y.
,
Cui
,
K.
,
Wu
,
P.
,
Fang
,
W.
, and
Liu
,
D.
,
2021
, “
Multidimensional Data Modeling and Model Validation for Digital Twin Workshop
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031005
.
96.
Liu
,
S.
,
Bao
,
J.
,
Lu
,
Y.
,
Li
,
J.
,
Lu
,
S.
, and
Sun
,
X.
,
2021
, “
Digital Twin Modeling Method Based on Biomimicry for Machining Aerospace Components
,”
J. Manuf. Syst.
,
58
(
Part B
), pp.
180
195
.
97.
Shahpar
,
S.
,
2020
, “
Building Digital Twins to Simulate Manufacturing Variation
,” Turbo Expo: Power for Land, Sea, and Air, Vol.
84065
, Virtual, Online, Sept. 21–25,
American Society of Mechanical Engineers
, p.
V02AT32A049
.
98.
Reza
,
M.
,
Faraji
,
F.
, and
Knoll
,
A.
,
2024
, “
Progress and Future Directions on Predictive Data-Driven Reduced-Order Modeling for Electric Propulsion Digital Twins
,” Proceedings of the 38th International Electric Propulsion Conference (IEPC 2024), Toulouse, France, June 23–28.
99.
Lei
,
H.
,
Fanli
,
Z.
,
Wei
,
W.
,
Shuai
,
S.
, and
Haocheng
,
Z.
,
2024
, “
Digital Twin Method and Application Practice of Spacecraft System Driven by Mechanism Data
,”
Digital Twin
,
4
, p.
2
.
100.
Schwab
,
K.
,
2017
, “The Fourth Industrial Revolution: What It Means, How to Respond,”
Handbook of Research on Strategic Leadership in the Fourth Industrial Revolution
,
Z.
Simsek
,
C.
Heavey
, and
B. C.
Fox
, eds., Edward Elgar Publishing, pp.
29
34
.
101.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
, pp.
3563
3576
.
102.
Lu
,
Y.
,
Liu
,
C.
,
Kevin
,
I.
,
Wang
,
K.
,
Huang
,
H.
, and
Xu
,
X.
,
2020
, “
Digital Twin-Driven Smart Manufacturing: Connotation, Reference Model, Applications and Research Issues
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101837
.
103.
Microsoft Azure
,
2024
, “Digital Twins—Modeling and Simulations,” https://azure.microsoft.com/en-us/products/digital-twins/#content-card-list-oced27
104.
Chua
,
P. C.
,
Moon
,
S. K.
,
Ng
,
Y. T.
, and
Ng
,
H. Y.
,
2022
, “
A Surrogate Model to Predict Production Performance in Digital Twin-Based Smart Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031007
.
105.
Yan
,
D.
,
Liu
,
Q.
,
Leng
,
J.
,
Zhang
,
D.
,
Zhao
,
R.
,
Zhang
,
H.
, and
Wei
,
L.
,
2021
, “
Digital Twin-Driven Rapid Customized Design of Board-Type Furniture Production Line
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031011
.
106.
Jung
,
W.-K.
,
Park
,
Y.-C.
,
Lee
,
J.-W.
, and
Suh
,
E. S.
,
2021
, “
Simulation-Based Hybrid Optimization Method for the Digital Twin of Garment Production Lines
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031007
.
107.
Rezaei Aderiani
,
A.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2019
, “
Individualizing Locator Adjustments of Assembly Fixtures Using a Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041019
.
108.
Zhi
,
J.
,
Cao
,
Y.
,
Li
,
T.
,
Liu
,
F.
,
Luo
,
J.
,
Li
,
Y.
, and
Jiang
,
X.
,
2024
, “
A Digital Twin-Based Method for Assembly Deviations Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
9
), p.
091004
.
109.
Adebiyi
,
T. A.
,
Ajenifuja
,
N. A.
, and
Zhang
,
R.
,
2024
, “Digital Twins and Civil Engineering Phases: Reorienting Adoption Strategies,” preprint arXiv:2403.02426.
110.
Formoso
,
C. T.
,
Soibelman
,
L.
,
De Cesare
,
C.
, and
Isatto
,
E. L.
,
2002
, “
Material Waste in Building Industry: Main Causes and Prevention
,”
J. Constr. Eng. Manage.
,
128
(
4
), pp.
316
325
.
111.
Sacks
,
R.
,
Brilakis
,
I.
,
Pikas
,
E.
,
Xie
,
H. S.
, and
Girolami
,
M.
,
2020
, “
Construction With Digital Twin Information Systems
,”
Data-Centric Eng.
,
1
(
e14
), pp.
1
26
.
112.
Madubuike
,
O. C.
,
Anumba
,
C. J.
, and
Khallaf
,
R.
,
2022
, “
A Review of Digital Twin Applications in Construction.
J. Inf. Technol. Construct.
,
27
, pp.
145
175
.
113.
Opoku
,
D.-G. J.
,
Perera
,
S.
,
Osei-Kyei
,
R.
,
Rashidi
,
M.
,
Famakinwa
,
T.
, and
Bamdad
,
K.
,
2022
, “
Drivers for Digital Twin Adoption in the Construction Industry: A Systematic Literature Review
,”
Buildings
,
12
(
2
), p.
113
.
114.
Li
,
X.
,
Feng
,
M.
,
Ran
,
Y.
,
Su
,
Y.
,
Liu
,
F.
,
Huang
,
C.
,
Shen
,
H.
, et al.,
2023
, “
Big Data in Earth System Science and Progress Towards a Digital Twin
,”
Nat. Rev. Earth Environ.
,
4
(
5
), pp.
319
332
.
115.
Loigne
,
J. L.
, and
Smith
,
B.
, eds.,
2022
, “Advanced Information Systems Technology (AIST) Earth Systems Digital Twin (ESDT) Workshop Report,” Washington, DC, Workshop Co-Organized with Earth Science Information Partners (ESIP), https://esto.nasa.gov/files/ESDT_Workshop_Report.pdf.
116.
White
,
M.
, and
Ellington
,
S.
,
2022
, “Adoption of Digital Twin Within the Department of the Navy,” Student thesis,
Naval Postgraduate School, Monterey, CA
.
117.
Rivas
,
Á. R.
,
2018
, “
Navantia’s Shipyard 4.0 Model Overview
,”
Cienc. Tecnol. Buques
,
11
(
22
), pp.
77
85
. 110.25043/19098642.165
118.
Madusanka
,
N. S.
,
Fan
,
Y.
,
Yang
,
S.
, and
Xiang
,
X.
,
2023
, “
Digital Twin in the Maritime Domain: A Review and Emerging Trends
,”
J. Mar. Sci. Eng.
,
11
(
5
), p.
1021
.
119.
Choi
,
J.
,
Moon
,
S.
, and
Min
,
S.
,
2023
, “
Digital Twin Simulation Modeling Process With System Dynamics: An Application to Naval Ship Operation
,”
J. Robust Nonlinear Control
,
33
(
16
), pp.
10136
10150
.
120.
Woolley
,
A.
,
Mitchell
,
D.
,
Drazen
,
D.
,
Tuegel
,
E.
,
Grisso
,
B.
,
Mondoro
,
A.
,
Pegg
,
N.
, et al.,
2023
, “
Examining User Requirements for a Digital Twin Capability Supporting Naval Platform Management and Operations
,”
Digital Twin Technology Development and Application for Tri-Service Platforms and Systems
. Bastad, Sweden, Oct. 10–12, NATO Science and Technology Organization. .
121.
Lu
,
Y.
,
Shevtshenko
,
E.
, and
Wang
,
Y.
,
2021
, “
Physics-Based Compressive Sensing to Enable Digital Twins of Additive Manufacturing Processes
,”
J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031009
.
122.
Wen-Hao
,
W.
,
Guo-bing
,
C.
, and
Zi-chun
,
Y.
,
2021
, “
The Application and Challenge of Digital Twin Technology in Ship Equipment
,” J. Phys. Conf. Series, Vol.
1939
,
IOP Publishing
, p.
012068
.
123.
Kunkera
,
Z.
,
Opetuk
,
T.
,
Hadžić
,
N.
, and
Tošanović
,
N.
,
2022
, “
Using Digital Twin in a Shipbuilding Project
,”
Appl. Sci.
,
12
(
24
), p.
12721
.
124.
for Manufacturing Sciences
,
N. C.
,
2023
, “New Digital Twin Initiative Helps Navy Transform Its Data Into CBM System,” https://www.ncms.org/news/new-digital-twin-initiative-helps-navy-transform-its-data-into-cbm-system/
125.
Eckstein
,
M.
,
2021
, “NAVSEA Seeing Ship Sustainment Successes With Digital Twins, But Wants a More Comprehensive Tool,” https://news.usni.org/2021/05/14/navsea-seeing-ship-sustainment-successes-with-digital-twins-but-wants-a-more-comprehensive-tool
126.
Cronin
,
J.
,
Santi
,
E.
,
Wunderlich
,
A.
, and
Knight
,
J.
,
2023
, “
Fast System Level Model for Digital Twin Based Optimization of Naval Power and Energy System
,” 2023 IEEE Electric Ship Technologies Symposium (ESTS), Alexandria, VA, Aug. 1–4,
IEEE
, pp.
267
273
.
127.
Wong
,
A.
,
Cronin
,
J.
, and
Santi
,
E.
,
2023
, “
Digital Twin Approach Enables Switching Converter Adaptive Control for All-Electric Ship Power Distribution System
,” 2023 IEEE Electric Ship Technologies Symposium (ESTS), Alexandria, VA, Aug. 1–4,
IEEE
, pp.
154
160
.
128.
Sado
,
K.
,
Hainey
,
R.
,
Peralta
,
J.
,
Downey
,
A.
, and
Booth
,
K.
,
2023
, “
Digital Twin Model for Predicting the Thermal Profile of Power Cables for Naval Shipboard Power Systems
,” 2023 IEEE Electric Ship Technologies Symposium (ESTS), Alexandria, VA, Aug. 1–4,
IEEE
, pp.
299
302
.
129.
Sado
,
K.
,
Hannum
,
J.
, and
Booth
,
K.
,
2023
, “
Digital Twin Modeling of Power Electronic Converters
,” 2023 IEEE Electric Ship Technologies Symposium (ESTS),
Alexandria, VA, Aug. 1–4, IEEE
, pp.
86
90
.
130.
Booth
,
K.
,
Sado
,
K.
,
Hannum
,
J.
,
Knight
,
J.
, and
Dougal
,
R.
,
2023
, “
Introduction of Posture-Based Pre-alignment for Naval Applications
,” 2023 IEEE Electric Ship Technologies Symposium (ESTS), Alexandria, VA, Aug. 1–4,
IEEE
, pp.
464
468
.
131.
Sado
,
K.
,
Peskar
,
J.
,
Downey
,
A. R.
,
Ginn
,
H. L.
,
Dougal
,
R.
, and
Booth
,
K.
,
2024
, “
Query-and-Response Digital Twin Framework Using a Multi-domain, Multi-function Image Folio
,”
IEEE Trans. Transp. Electrif.
,
10
(
4
), pp.
7873
7885
.
132.
Cuzner
,
R.
,
Vygoder
,
M.
, and
Siddaiah
,
R.
,
2018
, “
Power Conversion and Distribution Equipment Metamodels for Dependable Design of Shipboard Integrated Power and Energy Systems
,” 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK, Nov. 7–9,
IEEE
, pp.
1
8
.
133.
Siddaiah
,
R.
,
Cuzner
,
R. M.
,
Sailabada
,
C.
,
Ordonez
,
J.
,
Rajagopal
,
N.
,
DiMarino
,
C.
,
Chatterjee
,
A.
, and
Chalfant
,
J.
,
2023
, “
Virtual Prototyping Process: Enabling Shipboard Sizing and Arrangement of a Power Electronics Power Distribution System
,” 2023 IEEE Electric Ship Technologies Symposium (ESTS), Alexandria, VA, Aug. 1–4,
IEEE
, pp.
19
28
.
134.
Sado
,
K.
,
Hannum
,
J.
,
Skinner
,
E.
,
Ginn
,
H. L.
, and
Booth
,
K.
,
2023
, “
Hierarchical Digital Twin of a Naval Power System
,” 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, Oct. 29–Nov. 2,
IEEE
, pp.
1514
1521
.
135.
Russell
,
J. L.
,
Dugar
,
J.
, and
Sweeney
,
J. W.
,
2024
, “
Human-Centered Smart Cities: An Evaluation of a Small Community Using the Smart Cities Initiative Framework
,” INCOSE International Symposium, Dublin Ireland, July 2–6, Vol.
34
,
Wiley Online Library
, pp.
1211
1226
.
136.
Francisco
,
A.
,
Mohammadi
,
N.
, and
Taylor
,
J. E.
,
2020
, “
Smart City Digital Twin–Enabled Energy Management: Toward Real-Time Urban Building Energy Benchmarking
,”
J. Manage. Eng.
,
36
(
2
), p.
04019045
.
137.
Mohammadi
,
N.
, and
Taylor
,
J. E.
,
2017
, “
Smart City Digital Twins
,” 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, Nov. 27–Dec. 1,
IEEE
, pp.
1
5
.
138.
Landivar-Bowles
,
J.
,
2024
, “Pilot Project—Digital Twin for Smart Farming: Digital Twins for In-Season Precision Crop Management,” https://dtl.tamids.tamu.edu/digital-twin-for-smart-farming/
139.
Song
,
Y.
,
2023
, “
Human Digital Twin, the Development and Impact on Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060819
.
140.
Bomström
,
H.
,
Annanperä
,
E.
,
Kelanti
,
M.
,
Xu
,
Y.
,
Mäkelä
,
S.-M.
,
Immonen
,
M.
,
Siirtola
,
P.
,
Teern
,
A.
,
Liukkunen
,
K.
, and
Päivärinta
,
T.
,
2022
, “
Digital Twins About Humans—Design Objectives From Three Projects
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
050907
.
141.
Onan Demirel
,
H.
,
Irshad
,
L.
,
Ahmed
,
S.
, and
Tumer
,
I. Y.
,
2021
, “
Digital Twin-Driven Human-Centered Design Frameworks for Meeting Sustainability Objectives
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031012
.
142.
Feng
,
Y.
,
Li
,
M.
,
Lou
,
S.
,
Zheng
,
H.
,
Gao
,
Y.
, and
Tan
,
J.
,
2021
, “
A Digital Twin-Driven Method for Product Performance Evaluation Based on Intelligent Psycho-Physiological Analysis
,”
J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031002
.
143.
Dietz
,
M.
,
Meissner
,
B.
,
Goppelt
,
F.
, and
Schmidt-Vollus
,
R.
,
2021
, “
On the Development of Virtual Labs Using Digital Twins and a Proposal for Didactic Optimization Using Design-Based Research
,” 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4), London, UK, July 29–30,
IEEE
, pp.
186
191
.
144.
Fuller
,
A.
,
Fan
,
Z.
,
Day
,
C.
, and
Barlow
,
C.
,
2020
, “
Digital Twin: Enabling Technologies, Challenges and Open Research
,”
IEEE Access
,
8
, p.
108952
.
145.
Dally
,
W. J.
, and
Poulton
,
J. W.
,
2008
,
Digitally Printed version (with corrections)
,
Cambridge University Press
.
146.
Huang
,
J.
,
Gheorghe
,
A.
,
Handley
,
H.
,
Pazos
,
P.
,
Pinto
,
A.
,
Kovacic
,
S.
,
Collins
,
A.
, et al.,
2020
, “
Towards Digital Engineering: the Advent of Digital Systems Engineering
,”
Int. J. Syst. Syst. Eng.
,
10
(
3
), pp.
234
261
.
147.
Subramanian
,
A. S. R.
,
Gundersen
,
T.
, and
Adams
,
T. A.
,
2018
, “
Modeling and Simulation of Energy Systems: A Review
,”
Processes
,
6
(
12
), p.
238
.
148.
Karkee
,
M.
,
Steward
,
B. L.
,
Kelkar
,
A. G.
, and
Kemp
,
Z. T.
,
2011
, “
Modeling and Real-Time Simulation Architectures for Virtual Prototyping of Off-Road Vehicles
,”
Virtual Reality
,
15
, pp.
83
96
.
149.
Pantelidakis
,
M.
, and
Mykoniatis
,
K.
,
2024
, “
Extending the Digital Twin Ecosystem: A Real-Time Digital Twin of a Linuxcnc-Controlled Subtractive Manufacturing Machine
,”
J. Manuf. Syst.
,
74
, pp.
1057
1066
.
150.
Osho
,
J.
,
Hyre
,
A.
,
Pantelidakis
,
M.
,
Ledford
,
A.
,
Harris
,
G.
,
Liu
,
J.
, and
Mykoniatis
,
K.
,
2022
, “
Four Rs Framework for the Development of a Digital Twin: The Implementation of Representation With a FDM Manufacturing Machine
,”
J. Manuf. Syst.
,
63
, pp.
370
380
.
151.
Xinghua
,
G.
,
Tang
,
S.
,
Pishdad-Bozorgi
,
P.
, and
Shelden
,
D. R.
,
2018
,
Foundational Research in Integrated Building Internet of Things (IoT) Data standards
,
Center for the Development and Application of Internet of Things Technologies (CDAIT), Georgia Institute of Technology
,
Atlanta, GA
,
IoT Research Working Group
.
152.
Landivar-Bowles
,
J.
,
Pal
,
P.
,
Bhandari
,
M.
, and
Landivar-Scott
,
J. L.
,
2023
, “Digital Twins Models for Crop Phenotyping, Management and Yield Forecasting,”
Authorea Preprints
.
153.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Advances in Neural Information Processing Systems 27
,
Montreal, Canada
,
Dec. 8–13
.
154.
Kingma
,
D. P.
and
Welling
,
M.
,
2014
, “Auto-Encoding Variational Bayes,”
International Conference on Learning Representations
, Banff, Canada, Apr. 14 –16.
155.
Ho
,
J.
,
Jain
,
A.
, and
Abbeel
,
P.
,
2020
, “
Denoising Diffusion Probabilistic Models
,”
Advances in Neural Information Processing Systems 33
,
Virtual
,
Dec. 6–12
.
156.
Dinh
,
L.
,
Sohl-Dickstein
,
J.
, and
Bengio
,
S.
,
2016
, “Density Estimation Using Real NVP,”
International Conference on Learning Representations. Toulon, France
, Apr. 24–26.
157.
Papamakarios
,
G.
,
Nalisnick
,
E.
,
Rezende
,
D. J.
,
Mohamed
,
S.
, and
Lakshminarayanan
,
B.
,
2021
, “
Normalizing Flows for Probabilistic Modeling and Inference
,”
J. Mach. Learn. Res.
,
22
(
57
), pp.
1
64
. http://jmlr.org/papers/v22/19-1028.html
158.
Rezende
,
D.
, and
Mohamed
,
S.
,
2015
, “
Variational Inference With Normalizing Flows
,” International Conference on Machine Learning, Lille, France, July 7–9,
PMLR
, p.
1530
1538
.
159.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
,
2017
, “
Attention is All You Need
,”
31st Conference on Neural Information Processing Systems
,
Long Beach, CA
.
160.
Brown
,
T. B.
,
2020
, “Language Models Are Few-Shot Learners,” Advances in Neural Information Processing Systems,
H.
Larochelle
,
M.
Ranzato
,
R.
Hadsell
,
M. F.
Balcan
, and
H.
Lin
, eds., Vancouver, Canada, Dec. 6–12, vol. 33, pp.
1877
1901
. https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
161.
Tao
,
Z.
,
Xu
,
W.
,
Huang
,
Y.
,
Wang
,
X.
, and
You
,
X.
,
2024
, “
Wireless Network Digital Twin for 6g: Generative AI as a Key Enabler
,”
IEEE Wireless Commun.
,
31
(
4
), pp.
24
31
.
162.
Chai
,
H.
,
Wang
,
H.
,
Li
,
T.
, and
Wang
,
Z.
,
2024
, “
Generative AI-Driven Digital Twin for Mobile Networks
,”
IEEE Network
,
38
(
5
), pp.
84
92
.
163.
Huang
,
X.
,
Yang
,
H.
,
Zhou
,
C.
,
Shen
,
X.
, and
Zhuang
,
W.
,
2024
, “When Digital Twin Meets Generative AI: Intelligent Closed-Loop Network Management,”
IEEE Network
, pp.
1
8
.
164.
Tsialiamanis
,
G.
,
Wagg
,
D. J.
,
Dervilis
,
N.
, and
Worden
,
K.
,
2021
, “
On Generative Models as the Basis for Digital Twins
,”
Data-Centric Eng.
,
2
(
e11
), pp.
1
29
.
165.
Eneyew
,
D. D.
,
Capretz
,
M. A.
, and
Bitsuamlak
,
G. T.
,
2024
, “
Continuous Model Calibration Framework for Smart-Building Digital Twin: A Generative Model-Based Approach
,”
Appl. Energy
,
375
, p.
124080
.
166.
Mu
,
H.
,
He
,
F.
,
Yuan
,
L.
,
Hatamian
,
H.
,
Commins
,
P.
, and
Pan
,
Z.
,
2024
, “
Online Distortion Simulation Using Generative Machine Learning Models: A Step Toward Digital Twin of Metallic Additive Manufacturing
,”
J. Ind. Inf. Integr.
,
38
, p.
100563
.
167.
Liang
,
C.
,
Du
,
H.
,
Sun
,
Y.
,
Niyato
,
D.
,
Kang
,
J.
,
Zhao
,
D.
, and
Imran
,
M. A.
,
2024
, “
Generative AI-Driven Semantic Communication Networks: Architecture, Technologies and Applications
,”
IEEE Trans. Cognit. Commun. Networking
,
11
(
1
), pp.
27
47
.
168.
Fang
,
W.
,
Zhang
,
H.
,
Qian
,
W.
,
Guo
,
Y.
,
Li
,
S.
,
Liu
,
Z.
,
Liu
,
C.
, and
Hong
,
D.
,
2023
, “
An Adaptive Job Shop Scheduling Mechanism for Disturbances by Running Reinforcement Learning in Digital Twin Environment
,”
J. Comput. Inf. Sci. Eng.
,
23
(
5
), p.
051013
.
169.
Xu
,
Q.
,
Zhou
,
G.
,
Zhang
,
C.
,
Chang
,
F.
,
Cao
,
Y.
, and
Zhao
,
D.
,
2023
, “Generative AI And Digital Twin Integrated Intelligent Process Planning: A Conceptual Framework,”
Preprint: Research Square
.
170.
Zhang
,
N.
,
Vergara-Marcillo
,
C.
,
Diamantopoulos
,
G.
,
Shen
,
J.
,
Tziritas
,
N.
,
Bahsoon
,
R.
, and
Theodoropoulos
,
G.
,
2024
, “Large Language Models for Explainable Decisions in Dynamic Digital Twins,”
preprint arXiv:2405.14411
. http://dx.doi.org/:10.48550/arXiv.2405.14411.
171.
Sun
,
Y.
,
Zhang
,
Q.
,
Bao
,
J.
,
Lu
,
Y.
, and
Liu
,
S.
,
2024
, “
Empowering Digital Twins With Large Language Models for Global Temporal Feature Learning
,”
J. Manuf. Syst.
,
74
, pp.
83
99
.
172.
Xia
,
Y.
,
Dittler
,
D.
,
Jazdi
,
N.
,
Chen
,
H.
, and
Weyrich
,
M.
,
2024
, “LLM Experiments With Simulation: Large Language Model Multi-Agent System for Process Simulation Parametrization in Digital Twins,”
2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA)
, Padova, Italy, Sept. 10–13.
173.
Lin
,
L.
,
Gershman
,
S.
,
Raitses
,
Y.
, and
Keidar
,
M.
,
2023
, “
Data-Driven Prediction of the Output Composition of an Atmospheric Pressure Plasma Jet
,”
J. Phys. D: Appl. Phys.
,
57
(
1
), p.
015203
.
174.
Martin
,
A. V. i.
, and
Selva
,
D.
,
2019
, “
Daphne: A Virtual Assistant for Designing Earth Observation Distributed Spacecraft Missions
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
,
13
, pp.
30
48
.
175.
Dutta
,
P.
,
Josan
,
P. K.
,
Wong
,
R. K.
,
Dunbar
,
B. J.
,
Diaz-Artiles
,
A.
, and
Selva
,
D.
,
2022
, “
Effect of Explanations in AI-Assisted Anomaly Treatment for Human Spaceflight Missions
,” Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Atlanta, GA, Oct. 10–14, Vol. 66,
SAGE Publications Sage CA
,
Los Angeles, CA
, pp.
697
701
.
176.
Apaza
,
G.
, and
Selva
,
D.
,
2024
, “
Leveraging Large Language Models for Tradespace Exploration
,”
J. Spacecraft Rockets
,
61
(
5
), pp.
1165
1183
.
177.
Chen
,
W.
,
Lee
,
D.
,
Balogun
,
O.
, and
Chen
,
W.
,
2023
, “
GAN-DUF: Hierarchical Deep Generative Models for Design Under Free-Form Geometric Uncertainty
,”
ASME J. Mech. Des.
,
145
(
1
), p.
011703
.
178.
Kreuzer
,
T.
,
Papapetrou
,
P.
, and
Zdravkovic
,
J.
,
2024
, “
Artificial Intelligence in Digital Twins—A Systematic Literature Review
,”
Data Knowl. Eng.
,
151
, p.
102304
.
179.
Mendi
,
A. F.
,
Erol
,
T.
, and
Doğan
,
D.
,
2021
, “
Digital Twin in the Military Field
,”
IEEE Internet Comput.
,
26
(
5
), pp.
33
40
.
180.
Lee
,
J.
,
Ni
,
J.
,
Singh
,
J.
,
Jiang
,
B.
,
Azamfar
,
M.
, and
Feng
,
J.
,
2020
, “
Intelligent Maintenance Systems and Predictive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110805
.
181.
Stentoft
,
J.
,
Adsbøll Wickstrøm
,
K.
,
Philipsen
,
K.
, and
Haug
,
A.
,
2021
, “
Drivers and Barriers for Industry 4.0 Readiness and Practice: Empirical Evidence From Small and Medium-Sized Manufacturers
,”
Prod. Plann. Control
,
32
(
10
), pp.
811
828
.
182.
Object Management Group, Inc.
,
2024
, Digital Twin Capabilities Periodic Table, https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/.
183.
Wright
,
L.
, and
Davidson
,
S.
,
2020
, “
How to Tell the Difference Between a Model and a Digital Twin
,”
Adv. Model. Simul. Eng. Sci.
,
7
(
13
), pp.
1
13
.
184.
Ante
,
L.
,
2021
, “
Digital Twin Technology for Smart Manufacturing and Industry 4.0: A Bibliometric Analysis of the Intellectual Structure of the Research Discourse
,”
Manuf. Lett.
,
27
, pp.
96
102
.
185.
Wooley
,
A.
,
Silva
,
D. F.
, and
Bitencourt
,
J.
,
2023
, “
When Is a Simulation a Digital Twin? A Systematic Literature Review
,”
Manuf. Lett.
,
35
, pp.
940
951
.
186.
Biela
,
J.
,
Kolar
,
J. W.
,
Stupar
,
A.
,
Drofenik
,
U.
, and
Muesing
,
A.
,
2010
, “
Towards Virtual Prototyping and Comprehensive Multi-Objective Optimisation in Power Electronics
,” Proceedings of the International Power Conversion and Intelligent Motion Conference, Nuremberg, Germany, May 4–6.
187.
de Jesús Leal-Romo
,
F.
,
Rayas-Sánchez
,
J. E.
, and
Chávez-Hurtado
,
J. L.
,
2020
, “
Surrogate-Based Analysis and Design Optimization of Power Delivery Networks
,”
IEEE Trans. Electromagn. Compat.
,
62
(
6
), pp.
2528
2537
.
188.
Singer
,
D. J.
,
Doerry
,
N.
, and
Buckley
,
M. E.
,
2009
, “
What Is Set-Based Design?
Nav. Eng. J.
,
121
(
4
), pp.
31
43
.
189.
Yarbrough
,
A. C.
,
Harris
,
G. A.
,
Purdy
,
G. T.
, and
Loyd
,
N.
,
2022
, “
Developing Taiichi Ohno’s Mental Model for Waste Identification in Nontraditional Applications
,”
ASME Open J. Eng.
,
1
, p. 011017.
190.
Ledford
,
A. B.
,
2023
, “A Data Element Mapping and Analysis (DEMA) Approach for Implementing a Complete Digital Thread,” Ph.D. thesis,
Auburn University
,
Auburn, AL
.
191.
Ledford
,
A. B.
,
Harris
,
G.
, and
Purdy
,
G.
,
2023
, “
Implementing a Complete Digital Thread: The Need for Data Element Mapping and Analysis
,”
IEEE Open J. Syst. Eng.
,
1
, pp.
139
152
.
192.
Ziegler
,
J.
,
Reimann
,
P.
,
Keller
,
F.
, and
Mitschang
,
B.
,
2021
, “
A Metadata Model to Connect Isolated Data Silos and Activities of the Cae Domain
,” International Conference on Advanced Information Systems Engineering, Melbourne, Victoria, Australia, June 28–July 2,
Springer
, pp.
213
228
.
193.
Li
,
C.
,
Li
,
S.
,
Feng
,
Y.
,
Gryllias
,
K.
,
Gu
,
F.
, and
Pecht
,
M.
,
2024
, “
Small Data Challenges for Intelligent Prognostics and Health Management: A Review
,”
Artif. Intell. Rev.
,
57
(
8
), p.
214
.
194.
Zio
,
E.
,
2022
, “
Prognostics and Health Management (PHM): Where are We and Where Do We (Need to) Go in Theory and Practice
,”
Reliab. Eng. Syst. Saf.
,
218
(
Part A
), p.
108119
.
195.
Botín-Sanabria
,
D. M.
,
Mihaita
,
A. -S.
,
Peimbert-García
,
R. E.
,
Ramírez-Moreno
,
M. A.
,
Ramírez-Mendoza
,
R. A.
, and
Lozoya-Santos
,
J. d. J.
,
2022
, “
Digital Twin Technology Challenges and Applications: A Comprehensive Review
,”
Remote Sens.
,
14
(
6
), p.
1335
.
196.
Correia
,
J. B.
,
Abel
,
M.
, and
Becker
,
K.
,
2023
, “
Data Management in Digital Twins: A Systematic Literature Review
,”
Knowl. Inf. Syst.
,
65
(
8
), pp.
3165
3196
.
197.
Xie
,
X.
,
Moretti
,
N.
,
Merino
,
J.
,
Chang
,
J.
,
Pauwels
,
P.
, and
Parlikad
,
A. K.
,
2022
, “
Enabling Building Digital Twin: Ontology-Based Information Management Framework for Multi-source Data Integration
,” IOP Conference Series: Earth and Environmental Science, Melbourne, Australia, June 26–30, Vol.
1101
,
IOP Publishing
, p.
092010
.
198.
He
,
C.
,
Luan
,
T. H.
,
Lu
,
R.
,
Su
,
Z.
, and
Dong
,
M.
,
2022
, “
Security and Privacy in Vehicular Digital Twin Networks: Challenges and Solutions
,”
IEEE Wireless Commun.
,
30
(
4
), pp.
154
160
.
199.
Wang
,
Y.
,
Su
,
Z.
,
Guo
,
S.
,
Dai
,
M.
,
Luan
,
T. H.
, and
Liu
,
Y.
,
2023
, “
A Survey on Digital Twins: Architecture, Enabling Technologies, Security and Privacy, and Future Prospects
,”
IEEE Internet Things J.
,
10
(
17
), pp.
14965
14987
.
200.
Xames
,
M. D.
, and
Topcu
,
T. G.
,
2024
, “
A Systematic Literature Review of Digital Twin Research for Healthcare Systems: Research Trends, Gaps, and Realization Challenges
,”
IEEE Access
,
12
, pp.
4099
4126
.
201.
Zhu
,
Y.
,
Cheng
,
J.
,
Liu
,
Z.
,
Cheng
,
Q.
,
Zou
,
X.
,
Xu
,
H.
,
Wang
,
Y.
, and
Tao
,
F.
,
2023
, “
Production Logistics Digital Twins: Research Profiling, Application, Challenges and Opportunities
,”
Rob. Comput. Integr. Manuf.
,
84
, p.
102592
.
202.
Attaran
,
M.
, and
Celik
,
B. G.
,
2023
, “
Digital Twin: Benefits, Use Cases, Challenges, and Opportunities
,”
Decis. Anal. J.
,
6
, p.
100165
.
203.
Xu
,
L.
,
Yu
,
H.
,
Qin
,
H.
,
Chai
,
Y.
,
Yan
,
N.
,
Li
,
D.
, and
Chen
,
Y.
,
2023
, “
Digital Twin for Aquaponics Factory: Analysis, Opportunities, and Research Challenges
,”
IEEE Trans. Ind. Inf.
,
20
(
4
), pp.
5060
5073
.
204.
Yassin
,
M. A.
,
Shrestha
,
A.
, and
Rabie
,
S.
,
2023
, “
Digital Twin in Power System Research and Development: Principle, Scope, and Challenges
,”
Energy Rev.
,
2
(
3
), p.
100039
.
205.
Wang
,
H.
,
Chen
,
X.
,
Jia
,
F.
, and
Cheng
,
X.
,
2023
, “
Digital Twin-Supported Smart City: Status, Challenges and Future Research Directions
,”
Expert Syst. Appl.
,
217
, p.
119531
.
206.
Tao
,
F.
,
Zhang
,
H.
, and
Zhang
,
C.
,
2024
, “
Advancements and Challenges of Digital Twins in Industry
,”
Nat. Comput. Sci.
,
4
(
3
), pp.
169
177
.
207.
Van Bossuyt
,
D. L.
,
Beery
,
P.
,
O’Halloran
,
B. M.
,
Hernandez
,
A.
, and
Paulo
,
E.
,
2019
, “
The Naval Postgraduate School’s Department of Systems Engineering Approach to Mission Engineering Education Through Capstone Projects
,”
Systems
,
7
(
3
), p.
38
.
208.
Turab
,
M.
, and
Jamil
,
S.
,
2023
, “
A Comprehensive Survey of Digital Twins in Healthcare in the Era of Metaverse
,”
BioMedInformatics
,
3
(
3
), pp.
563
584
.
209.
Omrany
,
H.
,
Al-Obaidi
,
K. M.
,
Husain
,
A.
, and
Ghaffarianhoseini
,
A.
,
2023
, “
Digital Twins in the Construction Industry: A Comprehensive Review of Current Implementations, Enabling Technologies, and Future Directions
,”
Sustainability
,
15
(
14
), p.
10908
.
210.
Semeraro
,
C.
,
Lezoche
,
M.
,
Panetto
,
H.
, and
Dassisti
,
M.
,
2021
, “
Digital Twin Paradigm: A Systematic Literature Review
,”
Comput. Ind.
,
130
, p.
103469
.
211.
Karabulut
,
E.
,
Pileggi
,
S. F.
,
Groth
,
P.
, and
Degeler
,
V.
,
2024
, “
Ontologies in Digital Twins: A Systematic Literature Review
,”
Future Gener. Comput. Syst.
,
153
, pp.
442
456
.
212.
Energy Advice Hub
,
2025
, Digital Twin Technology: What is it and how will it Impact the Energy Sector?, https://energyadvicehub.org/digital-twin-technolgy-what-is-it-and-how-will-it-impact-the-energy-sector/
213.
Ponniah
,
J.
, and
Pherwani
,
G.
,
2023
, “How to Use a Lifecycle Digital Twin to Streamline Carbon Capture Processes,” https://www.controleng.com/articles/how-to-use-a-lifecycle-digital-twin-to-streamline-carbon-capture-processes/
214.
Manufacturing USA
,
2024
, History, https://www.manufacturingusa.com/pages/history.
215.
MxD
,
2024
, MxD Projects, https://www.mxdusa.org/projects/.
216.
Tao
,
F.
,
Xiao
,
B.
,
Qi
,
Q.
,
Cheng
,
J.
, and
Ji
,
P.
,
2022
, “
Digital Twin Modeling
,”
J. Manuf. Syst.
,
64
, pp.
372
389
.
217.
Buede
,
D. M.
, and
Miller
,
W. D.
,
2024
,
The Engineering Design of Systems: Models and Methods
, 3rd ed.,
John Wiley & Sons
,
Hoboken, NJ
.
218.
Cederbladh
,
J.
,
Cicchetti
,
A.
, and
Suryadevara
,
J.
,
2024
, “
Early Validation and Verification of System Behaviour in Model-based Systems Engineering: a Systematic Literature Review
,”
ACM Trans. Software Eng. Methodol.
,
33
(
3
), pp.
1
67
.
219.
Bajaj
,
M.
,
Friedenthal
,
S.
, and
Seidewitz
,
E.
,
2022
, “
Systems Modeling Language (sysml V2) Support for Digital Engineering
,”
Insight
,
25
(
1
), pp.
19
24
.
220.
Friedenthal
,
S.
,
Moore
,
A.
, and
Steiner
,
R.
,
2014
,
A Practical Guide to SysML: The Systems Modeling Language. Third edition
,
Elsevier/Morgan Kaufmann
, The MK/OMG Press.
Waltham, MA
.
221.
van Tooren
,
M.
, and
La Rocca
,
G.
,
2008
, “
Systems Engineering and Multi-disciplinary Design Optimization
,” Collaborative Product and Service Life Cycle Management for a Sustainable World: Proceedings of the 15th ISPE International Conference on Concurrent Engineering (CE2008), Belfast, Northern Ireland, Aug. 17–21,
Springer
, pp.
401
415
.
222.
Ciampa
,
P. D.
,
La Rocca
,
G.
, and
Nagel
,
B.
,
2020
, “
A MBSE Approach to MDAO Systems for the Development of Complex Products
,” AIAA Aviation 2020 Forum, Virtual, June 15–19, p.
3150
.
223.
Chaudemar
,
J.-C.
, and
de Saqui-Sannes
,
P.
,
2021
, “
MBSE and MDAO for Early Validation of Design Decisions: A Bibliography Survey
,” 2021 IEEE International Systems Conference (SysCon), Vancouver, Canada, Apr. 15–May 15,
IEEE
, pp.
1
8
.
224.
Goldsman
,
D.
, and
Goldsman
,
P.
,
2015
, “Discrete-Event simulation,”
Modeling and Simulation in the Systems Engineering Life Cycle: Core Concepts and Accompanying Lectures
,
M. L.
Loper
, ed.,
Springer
,
New York City
, pp.
103
109
. ISBN: 9781447156345
225.
Pooch
,
U. W.
, and
Wall
,
J. A.
,
2024
,
Discrete Event Simulation: A Practical Approach
,
CRC Press
, Computer Engineering Series,
Boca Raton, FL
.
226.
Bala
,
B. K.
,
Arshad
,
F. M.
, and
Noe
,
K. M.
,
2017
,
System Dynamics: Modelling and Simulation
, 1st ed.,
Springer
,
Singapore
, pp. 278.
227.
Ogata
,
K.
,
2004
,
System Dynamics
, 4th ed.,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
228.
Porter
,
W.
,
Reese
,
C.
,
Bickford
,
J.
,
Bourn
,
S.
, and
Van Bossuyt
,
D. L.
,
2024
, “
The Impact of Counterfeit Components and LRUs in the Navy Surface Warfare Supply Chain: A Systems Dynamics Approach
,”
Syst. Eng.
,
8
(
2
), pp.
157
174
.
229.
Watson
,
M.
,
Mesmer
,
B.
, and
Farrington
,
P.
,
2020
, “Engineering Elegant Systems: Theory of Systems Engineering,”
National Aeronautics and Space Administration
, Report No. NASA/TP–20205003644, Technical Report.
230.
Watson
,
M.
,
Mesmer
,
B.
, and
Farrington
,
P.
,
2020
, “Engineering Elegant Systems: The Practice of Systems Engineering,”
National Aeronautics and Space Administration
, Report No. NASA/TP–20205003646, Technical Report.
231.
Trevino
,
L.C.
,
Berg
,
P.
,
Johnson
,
S.
, and
England
,
D.
,
2016
, “
Modeling in the State Flow Environment to Support Launch Vehicle Verification Testing For Mission and Fault Management Algorithms in the NASA Space Launch System
,”
AIAA SPACE 2016
. Long Beach, CA, Sept. 13–16.
232.
Watson
,
M. D.
,
2021
, “
Digital Prototyping Methods to Enable Product Development Analysis Cycle Compression in Aerospace Systems
,” IEEE Aerospace Conference, Big Sky, MT, Mar. 6–13.
233.
Wang
,
K.
,
Wang
,
Y.
,
Li
,
Y.
,
Fan
,
X.
,
Xiao
,
S.
, and
Hu
,
L.
,
2022
, “
A Review of the Technology Standards for Enabling Digital Twin
,”
Digital Twin
,
2
(
4
), pp.
1
19
.
234.
International Organization for Standards
,
2021
, “ISO 23247-1:2021 Automation Systems and Integration—Digital Twin Framework for Manufacturing,” ISO, Geneva, Switzerland, Technical Report No. ISO 23247-2:2021.
235.
Shao
,
G.
,
2021
,
Use Case Scenarios for Digital Twin Implementation Based on ISO 23247
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
236.
Caiza
,
G.
, and
Sanz
,
R.
,
2024
, “
Immersive Digital Twin Under ISO 23247 Applied to Flexible Manufacturing Processes
,”
Appl. Sci.
,
14
(
10
), p.
4204
.
237.
TC 65 Industrial-Process Measurement, Control and Automation
,
2023
, “Asset Administration Shell for Industrial Applications—Part 1: Asset Administration Shell Structure,”
International Electrotechnical Commission
,
Geneva, Switzerland
, Report No. IEC 63278-1:2023, Technical Report.
238.
TC 65 Industrial-Process Measurement, Control and Automation
,
2024
, “Asset Administration Shell for Industrial Applications—Part 2: Information Meta Model,”
International Electrotechnical Commission
, Report No. IEC 63278-2 ED1, Technical Report.
239.
TC 65 Industrial-Process Measurement, Control and Automation
,
2024
, “Asset Administration Shell for Industrial Applications—Part 3: Security Provisions for Asset Administration Shells,”
International Electrotechnical Commission
, Report No. IEC63278-3 ED1, Technical Report.
240.
TC 65 Industrial-Process Measurement, Control and Automation
,
2025
, “Asset Administration Shell for Industrial Applications—Part 4: Use Cases and Modelling Examples,”
International Electrotechnical Commission
, Report No. IEC 63278-4 ED1, Technical Report.
241.
TC 65 Industrial-Process Measurement, Control and Automation
,
2027
, “Asset Administration Shell for Industrial Applications—Part 5: Interfaces,”
International Electrotechnical Commission. In Development
, Repor No. IEC 63278-5 ED1, Technical Report.
242.
Wang
,
S.
,
Lai
,
X.
,
He
,
X.
,
Qiu
,
Y.
, and
Song
,
X.
,
2022
, “
Building a Trustworthy Product-Level Shape-Performance Integrated Digital Twin With Multifidelity Surrogate Model
,”
J. Mech. Des.
,
144
(
3
), p.
031703
.
243.
Wagner
,
C.
,
Grothoff
,
J.
,
Epple
,
U.
,
Drath
,
R.
,
Malakuti
,
S.
,
Grüner
,
S.
,
Hoffmeister
,
M.
, and
Zimermann
,
P.
,
2017
, “
The Role of the Industry 4.0 Asset Administration Shell and the Digital Twin During the Life Cycle of a Plant
,” 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, Sept. 12–15,
IEEE
, pp.
1
8
.
244.
Abdel-Aty
,
T. A.
,
Negri
,
E.
, and
Galparoli
,
S.
,
2022
, “
Asset Administration Shell in Manufacturing: Applications and Relationship With Digital Twin
,”
IFAC-PapersOnLine
,
55
(
10
), pp.
2533
2538
.
245.
Platenius-Mohr
,
M.
,
Malakuti
,
S.
,
Grüner
,
S.
,
Schmitt
,
J.
, and
Goldschmidt
,
T.
,
2020
, “
File-and API-Based Interoperability of Digital Twins by Model Transformation: An IOT Case Study Using Asset Administration Shell
,”
Future Gener. Comput. Syst.
,
113
, pp.
94
105
.
246.
Alexopoulos
,
K.
,
Weber
,
M.
,
Trautner
,
T.
,
Manns
,
M.
,
Nikolakis
,
N.
,
Weigold
,
M.
, and
Engel
,
B.
,
2023
, “
An Industrial Data-Spaces Framework for Resilient Manufacturing Value Chains
,”
Procedia CIRP
,
116
, pp.
299
304
.
247.
Bakopoulos
,
E.
,
Sipsas
,
K.
,
Nikolakis
,
N.
, and
Alexopoulos
,
K.
,
2024
, “
A Digital Twin and Data Spaces Framework Towards Resilient Manufacturing Value Chains
,”
IFAC-PapersOnLine
,
58
(
19
), pp.
163
168
.
248.
Lv
,
Z.
,
2023
, “
Digital Twins in Industry 5.0
,”
Research
,
6
(
0071
), pp.
1
16
.
249.
Awouda
,
A.
,
Traini
,
E.
,
Bruno
,
G.
, and
Chiabert
,
P.
,
2024
, “
Iot-based Framework for Digital Twins in the Industry 5.0 Era
,”
Sensors
,
24
(
2
), p.
594
.
250.
Diakakis
,
S.
,
Zlatev
,
P.
,
Palov
,
N.
,
Maris
,
T.
,
Santas
,
A.
, and
Papadimitriou
,
M.
,
2024
, “
A Review of Interoperability Challenges and Solutions Towards a Digital Twin of the European Electricity Grid
,” 2024 16th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, Sept. 19–22,
IEEE
, pp.
1
5
.
251.
Monti
,
A.
,
Dolley
,
B.
,
Palensky
,
P.
, and
Parisot
,
A.
,
2024
, “
Building a Digital Twin for European Energy Infrastructure: The Role of Open Source
,”
IEEE Electrif. Mag.
,
12
(
3
), pp.
78
84
.
252.
Raes
,
L.
,
Michiels
,
P.
,
Adolphi
,
T.
,
Tampere
,
C.
,
Dalianis
,
A.
,
McAleer
,
S.
, and
Kogut
,
P.
,
2021
, “
Duet: A Framework for Building Interoperable and Trusted Digital Twins of Smart Cities
,”
IEEE Internet Comput.
,
26
(
3
), pp.
43
50
.
253.
McAleer
,
S. R.
,
McAleer
,
M.
, and
Kogut
,
P.
,
2021
, “
Forging the Future of Responsive Cities Through Local Digital Twins
,” NDCIRCULAR CITIES, 127, p.
25
.
254.
Supianto
,
A. A.
,
Nasar
,
W.
,
Aspen
,
D. M.
,
Hasan
,
A.
,
Karlsen
,
A. T.
, and
Torres
,
R. D. S.
,
2024
, “
An Urban Digital Twin Framework for Reference and Planning
,”
IEEE Access
,
12
, pp.
152444
152465
.
255.
Geenen
,
T.
,
Wedi
,
N.
,
Milinski
,
S.
,
Hadade
,
I.
,
Reuter
,
B.
,
Smart
,
S.
, and
Hawkes
,
J.
,
2024
, “
Digital Twins, the Journey of an Operational Weather System Into the Heart of Destination Earth
,”
Procedia Comput. Sci.
,
240
, pp.
99
108
.
256.
Kontkanen
,
J.
,
Manninen
,
P.
,
Acosta
,
M.
,
Bretonnière
,
P.-A.
,
Castrillo
,
M.
,
Davini
,
P.
,
Doblas-Reyes
,
F.
, et al.,
2024
, “Climate Adaptation Digital Twin Transforming Climate Data to Actionable Information,” GU General Assembly 2024, Vienna, Austria, Apr. 14–19, EGU24-17334.
257.
Green
,
A. C.
,
Lewis
,
E.
,
Tong
,
X.
, and
Wardle
,
R.
,
2025
, “
A Framework for Incorporating Rainfall Data into a Flooding Digital Twin
,”
J. Hydrol.
, p. 132893.
258.
Patruno
,
J.
,
Romeo
,
A.
,
Catracchia
,
S.
,
Vitolo
,
C.
,
Wiesmann
,
D.
,
Arthurs
,
D.
,
Fratini
,
S.
,
Papadopoulou
,
T.
, and
Castel
,
F.
,
2024
, “
Destination Earth Core Service Platform’s Initial Set of Use Cases
,” IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium,
IEEE
, pp.
883
886
.
259.
Hua
,
V.
,
Nguyen
,
T.
,
Dao
,
M-S.
,
Nguyen
,
H. D.
, and
Nguyen
,
B. T.
,
2022
, “
The Impact of Data Imputation on Air Quality Prediction Problem
,”
PLOS ONE
,
19
(
9
), p. e0306303.
260.
Change2Twin
,
2024
, Change2Twin. https://www.change2twin.eu/.
261.
Barrowclough
,
O.
,
Bujari
,
A.
,
Haenisch
,
J.
,
Pileggi
,
P.
,
Woitsch
,
R.
,
Kulczewski
,
M.
, and
Falcioni
,
D.
,
2022
, “Enabling Technologies for Digital Twins in Manufacturing,” The Change2Twin Consortium, Position Paper, Oslo, Norway.
262.
Tzachor
,
A.
,
Hendel
,
O.
, and
Richards
,
C. E.
,
2023
, “
Digital Twins: A Stepping Stone to Achieve Ocean Sustainability?
,
npj Ocean Sustainability
,
2
(
1
), p.
16
.
263.
Bahurel
,
P.
,
Brönner
,
U.
,
Buttigieg
,
P.-L.
,
Chai
,
F.
,
Chassignet
,
E.
,
Devey
,
C.
,
Fanjul
,
E. A.
, et al.,
2023
, “Ditto Programme Whitepaper,” DITTO Programme of the UN Ocean Decade, Technical Report, New York.
264.
Bousquet
,
J.
,
Bedbrook
,
A.
,
Czarlewski
,
W.
,
De Carlo
,
G.
,
Fonseca
,
J. A.
,
Ballester
,
M. A. G.
,
Illario
,
M.
, et al.,
2021
, “
Digital Health Europe (DHE) Twinning on Severe Asthma—Kick-Off Meeting Report
,”
J. Thoracic Dis.
,
13
(
5
), p.
3215
.
265.
Coll
,
N. E.
,
2020
, “
Digital Health Europe: Assessing and Supporting Capacity-Building for ICT-Enabled Integrated Care Twinning Projects
,”
Int. J. Integr. Care
,
21
(
S1
), p.
37
.
266.
Alonso
,
R.
,
Borras
,
M.
,
Koppelaar
,
R. H.
,
Lodigiani
,
A.
,
Loscos
,
E.
, and
Yöntem
,
E.
,
2019
, “
SPHERE: Bim Digital Twin Platform
,” Sustainable Places 2019, Cagliari, Italy, June 5–7
MDPI
, p.
9
.
267.
Lu
,
Q.
,
Xie
,
X.
,
Heaton
,
J.
,
Parlikad
,
A. K.
, and
Schooling
,
J.
,
2020
, “
“From Bim Towards Digital Twin: Strategy and Future Development for Smart Asset Management”
,” Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future: Proceedings of SOHOMA 2019, Valencia, Spain, Oct. 3–4, pp.
392
404
.
268.
IDP Ingenieria Y Arquitectura Iberia SL
,
2024
, SPHERE BIM Digital Twin Platform. https://sphere-project.eu/.
269.
Schmuck
,
R.
,
2021
, “
Global Supply Chain Quality Integration Strategies and the Case of the Boeing 787 Dreamliner Development
,”
Procedia Manuf.
,
54
, pp.
88
94
.
270.
Aydemir
,
H.
,
Zengin
,
U.
, and
Durak
,
U.
,
2020
, “
The Digital Twin Paradigm for Aircraft Review and Outlook
,” AIAA Scitech 2020 Forum, Orlando, FL, Jan. 6–10, p.
0553
.
271.
Piromalis
,
D.
, and
Kantaros
,
A.
,
2022
, “
Digital Twins in the Automotive Industry: The Road Toward Physical-Digital Convergence
,”
Appl. Syst. Innovation
,
5
(
4
), p.
65
.
272.
Cooke
,
P.
,
2020
, “
Gigafactory Logistics in Space and Time: Tesla’s Fourth Gigafactory and Its Rivals
,”
Sustainability
,
12
(
5
), p.
2044
.
273.
North Atlantic Treaty Organization
,
2024
, 10 Things You Need to Know About NATO, https://www.nato.int/cps/eb/natohq/126169.htm.
274.
Maathuis
,
C.
,
2022
, “
An Outlook of Digital Twins in Offensive Military Cyber Operations
,” European Conference on the Impact of Artificial Intelligence and Robotics, Oxford, UK, Dec. 1–2, Vol. 4, pp.
45
53
.
275.
Doroftei
,
D.
,
De Vleeschauwer
,
T.
,
Bue
,
S. L.
,
Dewyn
,
M.
,
Vanderstraeten
,
F.
, and
De Cubber
,
G.
,
2021
, “
Human-Agent Trust Evaluation in a Digital Twin Context
,” 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), Vancouver, British Columbia, Canada, Aug. 8–12,
IEEE
, pp.
203
207
.
276.
Voas
,
J.
,
2025
, Security and Trust Considerations for Digital Twin Technology, NIST IR 8356. National Institute of Standards and Technology, Gaithersburg, MD.
277.
National Institute of Standards and Technology
,
2024
, “NIST Launches Exploratory Digital Twins Study,” https://www.nist.gov/news-events/news/2024/01/nist-launches-exploratory-digital-twins-study
278.
Henry
,
M.
,
Vachula
,
G.
,
Prince
,
G. B.
,
Pehowich
,
J.
,
Rittenbach
,
T.
,
Satake
,
H.
, and
Hegedus
,
J.
,
2012
, “
A Comparison of Open Architecture Standards for the Development of Complex Military Systems: Gra, Face, Sca Next (4.0)
,” MILCOM 2012-2012 IEEE Military Communications Conference, Orlando, FL, Oct. 29–Nov. 1,
IEEE
, pp.
1
9
.
279.
Shambaugh
,
D.
,
2021
,
Where Great Powers Meet: America & China in Southeast Asia
,
Oxford University Press
,
New York
.
280.
Mearsheimer
,
J. J.
,
2021
, “
The Inevitable Rivalry: America, China, and the Tragedy of Great-power Politics
,”
Foreign Aff.
,
100
(
6
), pp.
48
58
. https://www.jstor.org/stable/27121441
281.
Jacobs
,
F.
,
Stegmann
,
K.
, and
Siebeck
,
M.
,
2014
, “
Promoting Medical Competencies Through International Exchange Programs: Benefits on Communication and Effective Doctor-Patient Relationships
,”
BMC Med. Educ.
,
14
(
43
), pp.
1
8
.
282.
Leutwyler
,
B.
, and
Lottenbach
,
S.
,
2011
, “Reflection on Normality: The Benefits of International Student Exchange for Teacher Education,”
Pains and Gains of International Mobility in Teacher Education
,
T.
Goetz
,
G.
Jaritz
, and
F. K.
Oser
, eds.,
Brill
,
Leiden, The Netherlands
, pp.
59
77
.
283.
Rogers
,
N.
,
Turner
,
C.
,
Castanier
,
M. P.
,
Hartman
,
G.
,
Rapp
,
S.
, and
Wagner
,
J.
,
2024
, “A Digital Design Agent for Ground Vehicles,”
SAE
, Technical Report, Detroit, MI.
284.
Sutton
,
M.
,
Daniels
,
J.
,
Masoudi
,
N.
,
Gorsich
,
D.
, and
Turner
,
C.
,
2024
, “
Approaches for Exploration, Analysis, and Visualization of Tradespace for Engineering Decision-Making
,”
International Design Conference
,
Cavtat, Dubrovnik, Croatia
,
20-23 May
.
285.
Turner
,
C. J.
,
Masoudi
,
N.
,
Stewart
,
H.
,
Daniels
,
J.
,
Gorsich
,
D.
,
Rizzo
,
D.
,
Hartman
,
G.
, et al.,
2022
, “
A Synthetic Tradespace Model for Tradespace Analysis and Exploration
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, St. Louis, MO, Aug. 14–17, Vol. 86212,
American Society of Mechanical Engineers
, p.
V002T02A080
.
286.
Daniels
,
J.
,
Wagner
,
J. R.
,
Turner
,
C. J.
,
Gorsich
,
D.
,
Rizzo
,
D.
,
Hartman
,
G.
,
Agusti
,
R.
,
Skowronska
,
A.
,
Castanier
,
M.
, and
Rapp
,
S. H.
,
2022
, “
Tradespace Organizational Practices: A Case Study
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, St. Louis, MO, Aug. 14–17, Vol. 86212,
American Society of Mechanical Engineers
, p.
V002T02A081
.
287.
Kamath
,
V.
,
Morgan
,
J.
, and
Ali
,
M. I.
,
2020
, “
Industrial Iot and Digital Twins for a Smart Factory: An Open Source Toolkit for Application Design and Benchmarking
,” 2020 Global Internet of Things Summit (GIoTS), Dublin, Ireland, June 3,
IEEE
, pp.
1
6
.
288.
Yeo
,
K.
, and
Ren
,
Y.
,
2009
, “
Risk Management Capability Maturity Model for Complex Product Systems (COPS) Projects
,”
Syst. Eng.
,
12
(
4
), pp.
275
294
.
289.
Sim
,
S. E.
,
Easterbrook
,
S.
, and
Holt
,
R. C.
,
2003
, “
Using Benchmarking to Advance Research: A Challenge to Software Engineering
,” 25th International Conference on Software Engineering, Portland, OR, May 3–10,
IEEE
, pp.
74
83
.
290.
Summers
,
J. D.
,
Eckert
,
C.
,
Goel
,
A.
, et al.,
2013
, “
Function in Engineering: Benchmarking Representations and Models
,” DS 75-2: Proceedings of the 19th International Conference on Engineering Design (ICED13), Design for Harmonies, Vol. 2: Design Theory and Research Methodology, Seoul, South Korea, Aug. 19–22, pp.
223
232
.
291.
Summers
,
J. D.
,
Eckert
,
C.
, and
Goel
,
A. K.
,
2017
, “
Function in Engineering: Benchmarking Representations and Models
,”
AI Edam
,
31
(
4
), pp.
401
412
.
292.
Syed
,
U.
,
Light
,
E.
,
Guo
,
X.
,
Zhang
,
H.
,
Qin
,
L.
,
Ouyang
,
Y.
, and
Hu
,
B.
,
2024
, “Benchmarking the Capabilities of Large Language Models in Transportation System Engineering: Accuracy, Consistency, and Reasoning Behaviors,” preprint arXiv:2408.08302.
293.
Steuben
,
J.
,
Mustoe
,
G.
, and
Turner
,
C.
,
2016
, “
Massively Parallel Discrete Element Method Simulations on Graphics Processing Units
,”
J. Comput. Inf. Sci. Eng.
,
16
(
3
), p.
031001
.
294.
Steuben
,
J.
,
Andersen
,
K.
,
Ostrum
,
C.
, and
Turner
,
C. J.
,
2010
, “
Design of an Instrumented Lathe Tool Post for Vibration Monitoring Studies
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Quebec, Canada, Aug. 15–18, Vol. 44113, pp.
935
945
.
295.
Turner
,
C. J.
,
2009
, “
Fault Recognition in the Presence of Error With NURBS-Based Metamodels
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, CA, Aug. 30–Sept. 2, Vol. 48999, pp.
1265
1275
.
296.
Steuben
,
J.
,
Michopoulos
,
J.
,
Iliopoulos
,
A.
, and
Turner
,
C.
,
2015
, “
Inverse Characterization of Composite Materials Via Surrogate Modeling
,”
Compos. Struct.
,
132
, pp.
694
708
.
297.
Dahmen
,
U.
, and
Roßmann
,
J.
, “Simulation-Based Verification with Experimentable Digital Twins in Virtual Testbeds,”
Tagungsband des 3. Kongresses Montage Handhabung Industrieroboter
,
T.
Schüppstuhl
,
K.
Tracht
, and
J.
Franke
, eds.,
Erlagen, Germany
,
Feb. 27–28
,
Springer
, pp.
139
147
.
298.
Schluse
,
M.
, and
Rossmann
,
J.
,
2016
, “
From Simulation to Experimentable Digital Twins: Simulation-Based Development and Operation of Complex Technical Systems
,” 2016 IEEE International Symposium on Systems Engineering (ISSE), Edinburgh, UK, Oct. 3–5,
IEEE
, pp.
1
6
.
299.
Dahmen
,
U.
, and
Rossmann
,
J.
,
2018
, “
Experimentable Digital Twins for a Modeling and Simulation-Based Engineering Approach
,” 2018 IEEE International Systems Engineering Symposium (ISSE), Rome, Italy, Oct. 1–3,
IEEE
, pp.
1
8
.
300.
Dahmen
,
U.
,
Osterloh
,
T.
, and
Roßmann
,
J.
,
2022
, “
Verification and Validation of Digital Twins and Virtual Testbeds
,”
Int. J. Adv. Appl. Sci.
,
11
(
1
), pp.
47
64
.
301.
Wang
,
T.
,
Tan
,
C.
,
Huang
,
L.
,
Shi
,
Y.
,
Yue
,
T.
, and
Huang
,
Z.
,
2023
, “
Simplexity Testbed: A Model-Based Digital Twin Testbed
,”
Comput. Ind.
,
145
, p.
103804
.
302.
Modrakowski
,
E.
,
Rahenbrock
,
N.
,
Möhlmann
,
E.
, and
Schlender
,
H.
,
2024
, “
Small Scale, Big Impact: Experiences From a Miniature VIl Testbed and Digital Twin Development
,” International Symposium on Leveraging Applications of Formal Methods, Crete, Greece, Oct. 21–31,
Springer
, pp.
83
106
.
303.
Hauge
,
J. B.
,
Zafarzadeh
,
M.
,
Jeong
,
Y.
,
Li
,
Y.
,
Khilji
,
W. A.
,
Larsen
,
C.
, and
Wiktorsson
,
M.
,
2021
, “
Digital Twin Testbed and Practical Applications in Production Logistics With Real-Time Location Data
,”
Int. J. Ind. Eng. Manage.
,
12
(
2
), pp.
129
140
.
304.
Madni
,
A. M.
,
Erwin
,
D.
, and
Madni
,
C. C.
,
2021
, “
Digital Twin-Enabled MBSE Testbed for Prototyping and Evaluating Aerospace Systems: Lessons Learned
,” 2021 IEEE Aerospace Conference (50100), Big Sky, MT, Mar. 6–13,
IEEE
, pp.
1
8
.
305.
Salinger
,
S. J.
,
Kapteyn
,
M. G.
,
Kays
,
C.
,
Pretorius
,
J. V.
, and
Willcox
,
K. E.
,
2020
, “
A Hardware Testbed for Dynamic Data-Driven Aerospace Digital Twins
,” Dynamic Data Driven Applications Systems: Third International Conference, DDDAS 2020, Proceedings 3, Boston, MA, Oct. 2–4, 2020,
Springer
, pp.
37
45
.
306.
Shen
,
Z.
,
Arraño-Vargas
,
F.
, and
Konstantinou
,
G.
,
2024
, “
Virtual Testbed for Development and Evaluation of Power System Digital Twins and Their Applications
,”
Sustainable Energy Grids Networks
,
38
, p.
101331
.
307.
Akgun
,
B.
,
Jolly
,
A.
,
Sachdev
,
B.
,
Ravichandran
,
D.
,
Amiri
,
R.
,
Jain
,
V.
, and
Jayabalan
,
M.
,
2024
, “
Advancing Next Generation Wireless Networks With Digital Twin: Construction, Validation, and Real-World Applications on An Indoor Over-the-Air Testbed
,”
IEEE Access
,
12
, pp.
166298
166319
.
308.
Polese
,
M.
,
Bonati
,
L.
,
D’Oro
,
S.
,
Johari
,
P.
,
Villa
,
D.
,
Velumani
,
S.
, and
Gangula
,
R.
,
2024
, “
Colosseum: The Open Ran Digital Twin
,”
IEEE Open J. Commun. Soc.
,
5
, pp.
5452
5466
.
309.
Erikstad
,
S. O.
,
2017
, “
Merging Physics, Big Data Analytics and Simulation for the Next-Generation Digital Twins
,”
High-Performance Marine Vehicles
,
Zevenwacht, South Africa
.
310.
Rathore
,
M. M.
,
Shah
,
S. A.
,
Shukla
,
D.
,
Bentafat
,
E.
, and
Bakiras
,
S.
,
2021
, “
The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities
,”
IEEE Access
,
9
, pp.
32030
32052
.
311.
Qi
,
Q.
, and
Tao
,
F.
,
2018
, “
Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360deg Comparison
,”
IEEE Access
,
6
, pp.
3585
3593
.
312.
Muhlheim
,
M. D.
,
Ramuhalli
,
P.
,
Huning
,
A.
,
Guler Yigitoglu
,
A.
,
Wood
,
R. T.
, and
Saxena
,
A.
,
2022
, “Status Report on Regulatory Criteria Applicable to the Use of Digital Twins,”
Oak Ridge National Lab.(ORNL)
,
Oak Ridge, TN
, Technical Report ORNL/SPR-2022/2493..
313.
Lal
,
A.
,
Dang
,
J.
,
Nabzdyk
,
C.
,
Gajic
,
O.
, and
Herasevich
,
V.
,
2022
, “
Regulatory Oversight and Ethical Concerns Surrounding Software as Medical Device (SAMD) and Digital Twin Technology in Healthcare
,”
Ann. Transl. Med.
,
10
(
18
), p.
950
.
314.
Zoltick
,
M. M.
, and
Maisel
,
J. B.
,
2023
, “Societal Impacts: Legal, Regulatory and Ethical Considerations for the Digital Twin,”
The Digital Twin
,
N.
Crespi
,
A. T.
Drobot
, and
R.
Minerva
, eds.,
Springer
,
New York City
, pp.
1167
1200
.
315.
U.S. Government Accountability Office
,
2023
, “Digital Twins—Virtual Models of People and Objects,”
U.S Government
, Report No. GAO-23-106453, Technical Report, https://www.gao.gov/assets/gao-23-106453.pdf
316.
Fakhraian
,
E.
,
Semanjski
,
I.
,
Semanjski
,
S.
, and
Aghezzaf
,
E.-H.
,
2023
, “
Towards Safe and Efficient Unmanned Aircraft System Operations: Literature Review of Digital Twins’ Applications and European Union Regulatory Compliance
,”
Drones
,
7
(
7
), p.
478
.
317.
Lee
,
N. T.
, and
Malamud
,
J.
,
2024
, “How Congress Can Secure Biden’s AI Legacy,” https://www.brookings.edu/articles/how-congress-can-secure-bidens-ai-legacy/
318.
Sherman
,
M.
,
2024
, “The Supreme Court Weakens Federal Regulators, Overturning Decades-Old Chevron Decision,” AP News, https://apnews.com/article/supreme-court-chevron-regulations-environment-5173bc83d3961a7aaabe415ceaf8d665
319.
Muhlheim
,
M.
,
Ramuhalli
,
P.
,
Huning
,
A.
,
Guler Yigitoglu
,
A.
,
Saxena
,
A.
, and
Wood
,
R. T.
,
2022
, “Regulatory Requirements, Guidance, and Review of Digital Twins,”
Oak Ridge National Lab.(ORNL)
,
Oak Ridge, TN
, Rpoert No. OSTI ID:1901641, Technical Report, https://www.osti.gov/biblio/1901641
320.
Yadav
,
V.
,
Wells
,
A.
,
Pope
,
C. L.
,
Andrus
,
J. P.
,
Chwasz
,
C. P.
,
Trask
,
T. C.
,
Eskins
,
D.
, et al.,
2022
, “Regulatory Considerations for Nuclear Energy Applications of Digital Twin Technologies,”
Idaho National Laboratory (INL)
,
Idaho Falls, ID
, Technical Report, INL/RPT–22-67630, TLR-RES/DE/REB-2022-06, 1984814.
321.
Suffia
,
G.
,
2023
, “
How to Regulate a Digital Twin City? Insights From a Proactive Law Approach: How ‘Human in the Loop’ and ‘Precautionary Principles’ Can Serve Policymakers in Their Attempt to Incorporate Respect of Rights and Solidarity in the Smart City
,” Proceedings of the 24th Annual International Conference on Digital Government Research, Gdańsk, Poland, July 11–14, pp.
122
128
.
322.
Coglianese
,
C.
,
2021
, “
Regulating New Tech: Problems, Pathways, and People
,”
TechREG Chronicle
, December 2021, pp.
21
38
. https://ssrn.com/abstract=3979844
323.
Digital Regulation Platform
,
2024
, “Transformative Technologies (AI) Challenges and Principles of Regulation,”
The World Bank and the International Telecommunication Union
,” Technical Report, https://digitalregulation.org/3004297-2/, last modified October 15, 2024, accessed March 18, 2025,
324.
European Union
,
2024
, “Artificial Intelligence Act,” https://artificialintelligenceact.eu/the-act/
325.
U.S. Government Accountability Office
,
2024
, “Federal Regulation: Selected Emerging Technologies Highlight the Need for Legislative Analysis and Enhanced Coordination,”
U.S. Government
, Report No. GAO-24-106122, Technical Report, https://www.gao.gov/products/gao-24-106122.
326.
U.S. Nuclear Regulatory Commission
,
2024
, “Digital Twin Project Team,” https://www.nrc.gov/public-involve/conference-symposia/ric/bios/digital-twin-project-team.html
327.
Story
,
B.
,
2023
, “
Digital Twins in Healthcare: Proactive Regulation to Prevent a “Runaway Train”
,”
NCJL Tech.
,
25
(
2
), p.
315
. https://scholarship.law.unc.edu/ncjolt/vol25/iss2/6
328.
Ruohomäki
,
T.
,
Airaksinen
,
E.
,
Huuska
,
P.
,
Kesäniemi
,
O.
,
Martikka
,
M.
, and
Suomisto
,
J.
,
2018
, “
Smart City Platform Enabling Digital Twin
,” 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, Sept. 25–27,
IEEE
, pp.
155
161
.
329.
Holmes
,
D.
,
Papathanasaki
,
M.
,
Maglaras
,
L.
,
Ferrag
,
M. A.
,
Nepal
,
S.
, and
Janicke
,
H.
,
2021
, “
Digital Twins and Cyber Security–Solution or Challenge?
2021 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Preveza, Greece, Sept. 24–26,
IEEE
, pp.
1
8
.
331.
Saeed
,
M. M. A.
,
Saeed
,
R. A.
, and
Ahmed
,
Z. E.
,
2024
, “Data Security and Privacy in the Age of AI and Digital Twins,”
Digital Twin Technology and AI Implementations in Future-Focused Businesses
,
S.
Ponnusamy
,
M.
Assaf
,
J.
Antari
,
S.
Singh
, and
S.
Kalyanaraman
, eds.,
IGI Global
,
Hershey, PA
, pp.
99
124
.
332.
Alcaraz
,
C.
, and
Lopez
,
J.
,
2022
, “
Digital Twin: A Comprehensive Survey of Security Threats
,”
IEEE Commun. Surv. Tutorials
,
24
(
3
), pp.
1475
1503
.
333.
Ashok
,
M.
,
Madan
,
R.
,
Joha
,
A.
, and
Sivarajah
,
U.
,
2022
, “
Ethical Framework for Artificial Intelligence and Digital Technologies
,”
Int. J. Inf. Manage.
,
62
, p.
102433
.
334.
Hodge
,
N.
,
2024
, “
Technology: Lawyers Urged to Remain Vigilant of Legal Risks From Digital Twinning Projects
,”
International Bar Association
. https://www.ibanet.org/Digital-twinning-technology-lawyers-urged-to-remain-vigilant-of-legal-risks
335.
Wanasinghe
,
T. R.
,
Wroblewski
,
L.
,
Petersen
,
B. K.
,
Gosine
,
R. G.
,
James
,
L. A.
,
De Silva
,
O.
,
Mann
,
G. K.
, and
Warrian
,
P. J.
,
2020
, “
Digital Twin for the Oil and Gas Industry: Overview, Research Trends, Opportunities, and Challenges
,”
IEEE Access
,
8
, p.
104175
.
336.
Brucherseifer
,
E.
,
Winter
,
H.
,
Mentges
,
A.
,
Mühlhäuser
,
M.
, and
Hellmann
,
M.
,
2021
, “
Digital Twin Conceptual Framework for Improving Critical Infrastructure Resilience
,”
at-Automatisierungstechnik
,
69
(
12
), pp.
1062
1080
.
337.
Masi
,
M.
,
Sellitto
,
G. P.
,
Aranha
,
H.
, and
Pavleska
,
T.
,
2023
, “
Securing Critical Infrastructures With a Cybersecurity Digital Twin
,”
Software Syst. Model.
,
22
(
2
), pp.
689
707
.
338.
Sutton
,
L.
,
Burns
,
S.
,
Caplan
,
M.
,
Fai
,
M.
,
Hii
,
A.
,
Gole
,
T.
, and
McGregor
,
S.
,
2021
, “
What Are Digital Twins and What Are the Legal Issues With Them
,”
Lexology
. https://www.lexology.com/library/detail.aspx?g=dda9e40b-f8ed-4ee0-96ea-4848711dd4c2
339.
Stapleton
,
D.
, and
Stapleton
,
K. M.
,
2022
, “
Digital Twins and Industry 4.0: A Review of Legal Implications Regarding Property Rights in Physical and Virtual Spaces
,”
J. Transp. Law Logist. Policy
,
89
(
1
), pp.
95
113
. ISSN: 1078-5906 ‎
340.
Milosevic
,
Z.
, and
van Schalkwyk
,
P.
,
2023
, “
Towards Responsible Digital Twins
,” International Conference on Enterprise Design, Operations, and Computing, Groningen, The Netherlands, Oct. 30–Nov. 3,
Springer
, pp.
123
138
.
341.
Tzachor
,
A.
,
Sabri
,
S.
,
Richards
,
C. E.
,
Rajabifard
,
A.
, and
Acuto
,
M.
,
2022
, “
Potential and Limitations of Digital Twins to Achieve the Sustainable Development Goals
,”
Nat. Sustainability
,
5
(
10
), pp.
822
829
.
342.
Teller
,
M.
,
2021
, “
Legal Aspects Related to Digital Twin
,”
Phil. Trans. R. Soc. A
,
379
(
2207
), p.
20210023
.
343.
Langas
,
E. F.
,
Zafar
,
M. H.
, and
Sanfilippo
,
F.
,
2023
, “
Harnessing Digital Twins for Human-Robot Teaming in Industry 5.0: Exploring the Ethical and Philosophical Implications
,” 2023 IEEE Symposium Series on Computational Intelligence (SSCI), Mexico City, Mexico, Dec. 5–8,
IEEE
, pp.
1788
1793
.
344.
Eckhart
,
M.
, and
Ekelhart
,
A.
,
2019
, “Digital Twins for Cyber-Physical Systems Security: State of the Art and Outlook,”
Security and Quality in Cyber-Physical Systems Engineering
,
S.
Biffl
,
M.
Eckhart
,
A.
Lüder
, and
E.
Weippl
, eds.,
Springer
,
New York City
, pp.
383
412
.
345.
Popa
,
E. O.
,
van Hilten
,
M.
,
Oosterkamp
,
E.
, and
Bogaardt
,
M. -J.
,
2021
, “
The Use of Digital Twins in Healthcare: Socio-Ethical Benefits and Socio-Ethical Risks
,”
Life Sci. Soc. Policy
,
17
(
6
), pp.
1
25
.
346.
de Kerckhove
,
D.
,
2021
, “
The Personal Digital Twin, Ethical Considerations
,”
Phil. Trans. R. Soc. A
,
379
(
2207
), p.
20200367
.
347.
Chalfant
,
J.
,
Langland
,
B.
,
Rigterink
,
D.
,
Sarles
,
C.
,
McCauley
,
P.
,
Woodward
,
D.
,
Brown
,
A.
, and
Ames
,
R.
,
2017
, “
Smart Ship System Design (s3d) Integration With the Leading Edge Architecture for Prototyping Systems (LEAPS)
,” 2017 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, Aug. 14–17,
IEEE
, pp.
104
110
.
348.
Smart
,
R.
,
Chalfant
,
J.
,
Herbst
,
J.
,
Langland
,
B.
,
Card
,
A.
,
Leonard
,
R.
, and
Gattozzi
,
A.
,
2017
, “
Using S3d to Analyze Ship System Alternatives for a 100 Mw 10,000 Ton Surface Combatant
,” 2017 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, Aug. 14–17,
IEEE
, pp.
96
103
.
349.
Arrua
,
S.
,
Abdollahi
,
H.
,
Santi
,
E.
,
Khan
,
J.
,
Leonard
,
R.
, and
Broughton
,
E.
,
2019
, “
Optimal Design of Liquid Cooling System for the Smart Ship System Design (s3d) Early Ship Design Tool
,” 2019 IEEE Electric Ship Technologies Symposium (ESTS), Washington, DC, Aug. 14–16,
IEEE
, pp.
16
23
.
350.
Chalfant
,
J.
,
Ferrante
,
M. D.
, and
Noble
,
J. A.
,
2014
, “Interim Report on S3D/Leaps Integration,”
Massachusetts Institute of Technology
, Sea Grant College Program, Technical Report, Project No. 2012-ESRDC-03-LEV.
351.
Bruynseels
,
K.
,
Santoni de Sio
,
F.
, and
Van den Hoven
,
J.
,
2018
, “
Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm
,”
Front. Genet.
,
9
, p.
31
.
352.
Huang
,
P.-H.
,
Kim
,
K.-H.
, and
Schermer
,
M.
,
2022
, “
Ethical Issues of Digital Twins for Personalized Health Care Service: Preliminary Mapping Study
,”
J. Med. Internet Res.
,
24
(
1
), p.
e33081
.
353.
Braun
,
M.
,
2021
, “
Represent Me: Please! Towards an Ethics of Digital Twins in Medicine
,”
J. Med. Ethics
,
47
(
6
), pp.
394
400
.
354.
Khapekar
,
S. H.
,
Wankhade
,
S.
,
Sawai
,
S.
,
Agrawal
,
S.
, and
Jaronde
,
P.
,
2024
, “AI-Driven Data Analytics Within Digital Twins: Transformative Potential and Ethical Consideration,”
Advances in Business Information Systems and Analytic
,
S.
Ponnusamy
,
M.
Assaf
,
J.
Antari
,
S.
Singh
, and
S.
Kalyanaraman
, eds.,
IGI Global
,
Hershey, PA
, pp.
61
69
.
355.
Ponnusamy
,
S.
,
Assaf
,
M.
,
Antari
,
J.
,
Singh
,
S.
, and
Kalyanaraman
,
S.
,
2024
,
Digital Twin Technology and AI Implementations in Future-Focused Businesses
,
IGI Global
.
356.
Kalaboukas
,
K.
,
Kiritsis
,
D.
, and
Arampatzis
,
G.
,
2023
, “
Governance Framework for Autonomous and Cognitive Digital Twins in Agile Supply Chains
,”
Comput. Ind.
,
146
, p.
103857
.
357.
Giuffrida
,
I.
,
2019
, “
Liability for AI Decision-Making: Some Legal and Ethical Considerations
,”
Fordham L. Rev.
,
88
, p.
439
. https://scholarship.law.wm.edu/facpubs/2003/
358.
Hagendorff
,
T.
,
2020
, “
The Ethics of AI Ethics: An Evaluation of Guidelines
,”
Mines Mach.
,
30
(
1
), pp.
99
120
.
359.
Floridi
,
L.
, and
Taddeo
,
M.
,
2016
, “What Is Data Ethics?.”
360.
Atchley
,
A.
,
Barr
,
H. M.
,
O’Hear
,
E.
,
Weger
,
K.
,
Mesmer
,
B.
,
Gholston
,
S.
, and
Tenhundfeld
,
N.
,
2024
, “
Trust in Systems: Identification of 17 Unresolved Research Questions and the Highlighting of Inconsistencies
,”
Theor. Issues Ergon. Sci.
,
25
(
4
), pp.
391
415
.
361.
Yeazitzis
,
T.
,
Weger
,
K.
,
Mesmer
,
B.
,
Clerkin
,
J.
, and
Van Bossuyt
,
D.
,
2023
, “
Biases in Stakeholder Elicitation as a Precursor to the Systems Architecting Process
,”
Systems
,
11
(
10
), p.
499
.
362.
Weger
,
K.
,
Matsuyama
,
L.
,
Zimmermann
,
R.
,
Mesmer
,
B.
,
Van Bossuyt
,
D.
,
Semmens
,
R.
, and
Eaton
,
C.
,
2023
, “
Insight Into User Acceptance and Adoption of Autonomous Systems in Mission Critical Environments
,”
Int. J. Hum.-Comput. Interact.
,
39
(
7
), pp.
1423
1437
.
363.
Matsuyama
,
L.
,
Zimmerman
,
R.
,
Eaton
,
C.
,
Weger
,
K.
,
Mesmer
,
B.
,
Tenhundfeld
,
N.
,
Van Bossuyt
,
D.
, and
Semmens
,
R.
,
2021
, “
Determinants That Are Believed to Influence the Acceptance and Adoption of Mission Critical Autonomous Systems
,” AIAA Scitech 2021 Forum, Virtual Event Online, Jan. 11–15 and 19–21, p.
1156
.
364.
Shao
,
G.
, and
Helu
,
M.
,
2020
, “
Framework for a Digital Twin in Manufacturing: Scope and Requirements
,”
Manuf. Lett.
,
24
, pp.
105
107
.
365.
Human
,
C.
,
Basson
,
A.
, and
Kruger
,
K.
,
2023
, “
A Design Framework for a System of Digital Twins and Services
,”
Comput. Ind.
,
144
, p.
103796
.
366.
Ciavotta
,
M.
,
Bettoni
,
A.
, and
Izzo
,
G.
,
2018
, “
Interoperable Meta Model for Simulation-in-the-Loop
,” 2018 IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg, Russia, May 15–18,
IEEE
, pp.
702
707
.
367.
Lutze
,
R.
,
2019
, “
Digital Twins in Ehealth: Prospects and Challenges Focussing on Information Management
,” 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Valbonne Sophia-Antipolis, France, June 17–19,
IEEE
, pp.
1
9
.
368.
Villalonga
,
A.
,
Negri
,
E.
,
Fumagalli
,
L.
,
Macchi
,
M.
,
Castaño
,
F.
, and
Haber
,
R.
,
2020
, “
Local Decision Making Based on Distributed Digital Twin Framework
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
10568
10573
.
369.
Redelinghuys
,
A.
,
Kruger
,
K.
, and
Basson
,
A.
,
2020
, “
A Six-layer Architecture for Digital Twins With Aggregation
,” Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future: Proceedings of SOHOMA 2019, Valencia, Spain, Oct. 3–4,
Springer
, pp.
171
182
.
370.
Redelinghuys
,
A.
,
Basson
,
A. H.
, and
Kruger
,
K.
,
2020
, “
A Six-Layer Architecture for the Digital Twin: A Manufacturing Case Study Implementation
,”
J. Intell. Manuf. Spec. Equip.
,
31
(
6
), pp.
1383
1402
.
371.
Anglani
,
N.
,
Oriti
,
G.
,
Fish
,
R.
, and
Van Bossuyt
,
D. L.
,
2022
, “
Design and Optimization Strategy to Size Resilient Stand-Alone Hybrid Microgrids in Various Climatic Conditions
,”
IEEE Open J. Ind. Appl.
,
3
, pp.
237
246
.
372.
Siritoglou
,
P.
,
Oriti
,
G.
, and
Van Bossuyt
,
D. L.
,
2021
, “
Distributed Energy-Resource Design Method to Improve Energy Security in Critical Facilities
,”
Energies
,
14
(
10
), p.
2773
.
373.
Shao
,
G.
,
Hightower
,
J.
, and
Schindel
,
W.
,
2023
, “
Credibility Consideration for Digital Twins in Manufacturing
,”
Manuf. Lett.
,
35
, pp.
24
28
.
374.
Barnes
,
R.
,
Beurdouche
,
B.
,
Robert
,
R.
,
Millican
,
J.
,
Omara
,
E.
, and
Cohn-Gordon
,
K.
,
2023
, “
RFC 9420: The Messaging Layer Security (MLS) Protocol
,”
Internet Engineering Task Force (IETF)
.
375.
Hale
,
B.
, and
Komlo
,
C.
,
2022
, “
On End-to-End Encryption
,”
Cryptology ePrint Archive
. https://eprint.iacr.org/2022/449.
Paper No. 2022/449
.
376.
Ferko
,
E.
,
Bucaioni
,
A.
,
Pelliccione
,
P.
, and
Behnam
,
M.
,
2023
, “
Standardisation in Digital Twin Architectures in Manufacturing
,” 2023 IEEE 20th International Conference on Software Architecture (ICSA), L'Aquila, Italy, Mar. 13–17,
IEEE
, pp.
70
81
.
377.
Jacoby
,
M.
, and
Usländer
,
T.
,
2020
, “
Digital Twin and Internet of Things—Current Standards Landscape
,”
Appl. Sci.
,
10
(
18
), p.
6519
.
378.
Van Bossuyt
,
D. L.
,
Hale
,
B.
,
Arlitt
,
R.
, and
Papakonstantinou
,
N.
,
2023
, “
Zero-Trust for the System Design Lifecycle
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060812
.
379.
Lin
,
S.-W.
,
Watson
,
K.
,
Shao
,
G.
,
Stojanovic
,
L.
, and
Zarkout
,
B.
,
2023
, “Digital Twin Core-Essential Models for Interoperability,”
IIC
, Technical Report, Industrial IoT Consortium Framework Publication, Boston, MA.
380.
Caradonna
,
J. L.
,
2022
,
Sustainability: A History
, Revised and Updated edition,
Oxford University Press
,
New York
.
381.
Mebratu
,
D.
,
1998
, “
Sustainability and Sustainable Development: Historical and Conceptual Review
,”
Environ. Impact Assess. Rev.
,
18
(
6
), pp.
493
520
.
382.
Grober
,
U.
, and
Cunningham
,
R.
,
2012
,
Sustainability: A Cultural History
,
Green Books
,
Totnes, UK
.
383.
Caradonna
,
J. L.
,
2017
,
Routledge Handbook of the History of Sustainability
,
Taylor & Francis Abingdon
,
UK
.
384.
Kaswan
,
K. S.
,
Dhatterwal
,
J. S.
,
Dhanda
,
S. S.
,
Balusamy
,
B.
, and
Abdullah
,
A.
,
2024
, “Digital Twin for Sustainable Development of Intelligent Manufacturing,”
Digital Twins in Industrial Production and Smart Manufacturing: An Understanding of Principles, Enhancers, and Obstacles
,
R. K.
Dhanaraj
,
B.
Balusamy
,
P.
Samuel
,
A. K.
Bashir
, and
S.
Kadry
, eds.,
Wiley
,
Hoboken, NJ
, pp.
125
159
.
385.
David
,
I.
, and
Bork
,
D.
,
2023
, “
Towards a Taxonomy of Digital Twin Evolution for Technical Sustainability
,” 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), Västerås, Sweden, Oct. 1–6,
IEEE
, pp.
934
938
.
386.
Li
,
L.
,
Qu
,
T.
,
Liu
,
Y.
,
Zhong
,
R. Y.
,
Xu
,
G.
,
Sun
,
H.
,
Gao
,
Y.
, et al.,
2020
, “
Sustainability Assessment of Intelligent Manufacturing Supported by Digital Twin
,”
IEEE Access
,
8
, p.
174988
.
387.
Carvalho
,
R.
, and
da Silva
,
A. R.
,
2021
, “
Sustainability Requirements of Digital Twin-Based Systems: A Meta Systematic Literature Review
,”
Appl. Sci.
,
11
(
12
), p.
5519
.
388.
Barni
,
A.
,
Fontana
,
A.
,
Menato
,
S.
,
Sorlini
,
M.
, and
Canetta
,
L.
,
2018
, “
Exploiting the Digital Twin in the Assessment and Optimization of Sustainability Performances
,” 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, Sept. 25–27,
IEEE
, pp.
706
713
.
389.
Tagliabue
,
L. C.
,
Cecconi
,
F. R.
,
Maltese
,
S.
,
Rinaldi
,
S.
,
Ciribini
,
A. L. C.
, and
Flammini
,
A.
,
2021
, “
Leveraging Digital Twin for Sustainability Assessment of an Educational Building
,”
Sustainability
,
13
(
2
), p.
480
.
390.
Kaewunruen
,
S.
, and
Xu
,
N.
,
2018
, “
Digital Twin for Sustainability Evaluation of Railway Station Buildings
,”
Front. Built Environ.
,
4
, p.
430624
.
391.
Kaewunruen
,
S.
, and
Lian
,
Q.
,
2019
, “
Digital Twin Aided Sustainability-based Lifecycle Management for Railway Turnout Systems
,”
J. Cleaner Prod.
,
228
, pp.
1537
1551
.
392.
Kamble
,
S. S.
,
Gunasekaran
,
A.
,
Parekh
,
H.
,
Mani
,
V.
,
Belhadi
,
A.
, and
Sharma
,
R.
,
2022
, “
Digital Twin for Sustainable Manufacturing Supply Chains: Current Trends, Future Perspectives, and an Implementation Framework
,”
Technol. Forecasting Social Change
,
176
, p.
121448
.
393.
Zhang
,
X.
,
Shen
,
J.
,
Saini
,
P. K.
,
Lovati
,
M.
,
Han
,
M.
,
Huang
,
P.
, and
Huang
,
Z.
,
2021
, “
Digital Twin for Accelerating Sustainability in Positive Energy District: A Review of Simulation Tools and Applications
,”
Front. Sustainable Cities
,
3
, p.
663269
.
394.
Ma
,
S.
,
Ding
,
W.
,
Liu
,
Y.
,
Ren
,
S.
, and
Yang
,
H.
,
2022
, “
Digital Twin and Big Data-Driven Sustainable Smart Manufacturing Based on Information Management Systems for Energy-Intensive Industries
,”
Appl. Energy
,
326
, p.
119986
.
395.
Turan
,
E.
,
Konuşkan
,
Y.
,
Yıldırım
,
N.
,
Tuncalp
,
D.
,
Inan
,
M.
,
Yasin
,
O.
,
Turan
,
B.
, and
Kerimoğlu
,
V.
,
2022
, “
Digital Twin Modelling for Optimizing the Material Consumption: A Case Study on Sustainability Improvement of Thermoforming Process
,”
Sustainable Comput.: Inf. Syst.
,
35
, p.
100655
.
396.
Weil
,
C.
,
Bibri
,
S. E.
,
Longchamp
,
R.
,
Golay
,
F.
, and
Alahi
,
A.
,
2023
, “
Urban Digital Twin Challenges: A Systematic Review and Perspectives for Sustainable Smart Cities
,”
Sustainable Cities Soc.
,
99
, p.
104862
.
397.
Cesco
,
S.
,
Sambo
,
P.
,
Borin
,
M.
,
Basso
,
B.
,
Orzes
,
G.
, and
Mazzetto
,
F.
,
2023
, “
Smart Agriculture and Digital Twins: Applications and Challenges in a Vision of Sustainability
,”
Eur. J. Agron.
,
146
, p.
126809
.
398.
Pater
,
J.
, and
Stadnicka
,
D.
,
2021
, “
Towards Digital Twins Development and Implementation to Support Sustainability–Systematic Literature Review
,”
Manage. Prod. Eng. Rev.
,
13
(
3
), pp.
63
73
.
399.
Wang
,
C.
,
Cai
,
Z.
, and
Li
,
Y.
,
2022
, “
Sustainable Blockchain-Based Digital Twin Management Architecture for IoT Devices
,”
IEEE Internet Things J.
,
10
(
8
), pp.
6535
6548
.
400.
Michael
,
J.
,
David
,
I.
, and
Bork
,
D.
,
2024
, “
Digital Twin Evolution for Sustainable Smart Ecosystems
,” Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, Linz, Austria, Sept. 22–27, pp.
1061
1065
.
401.
Alibrandi
,
U.
,
2022
, “
Risk-Informed Digital Twin of Buildings and Infrastructures for Sustainable and Resilient Urban Communities
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng.
,
8
(
3
), p.
04022032
.
402.
Assad
,
F.
,
Konstantinov
,
S.
,
Mus’ ab H
,
A.
,
Rushforth
,
E. J.
, and
Harrison
,
R.
,
2021
, “
Utilising Web-Based Digital Twin to Promote Assembly Line Sustainability
,” 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Victoria, BC, Canada, May 10–12,
IEEE
, pp.
381
386
.
403.
Arlitt
,
R.
,
Van Bossuyt
,
D. L.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2017
, “
The Function-Based Design for Sustainability Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041102
.
404.
Upadhyay
,
P.
, and
Kumar
,
A.
,
2020
, “
A House of Sustainability-Based Approach for Green Product Design: Setting Future Research Agenda
,”
Manage. Environ. Q.: Int. J.
,
31
(
4
), pp.
819
846
.
405.
Ceschin
,
F.
, and
Gaziulusoy
,
I.
,
2016
, “
Evolution of Design for Sustainability: From Product Design to Design for System Innovations and Transitions
,”
Des. Stud.
,
47
, pp.
118
163
.
406.
Bibri
,
S. E.
,
Huang
,
J.
,
Jagatheesaperumal
,
S. K.
, and
Krogstie
,
J.
,
2024
, “
The Synergistic Interplay of Artificial Intelligence and Digital Twin in Environmentally Planning Sustainable Smart Cities: A Comprehensive Systematic Review
,”
Environ. Sci. Ecotechnol.
,
20
p.
100433
.
407.
Al-Sartawi
,
A. M. M.
,
Al-Qudah
,
A. A.
, and
Shihadeh
,
F.
, eds.,
2024
,
Artificial Intelligence-Augmented Digital Twins: Transforming Industrial Operations for Innovation and Sustainability
, Studies in Systems, Decision and Control, Volume 503,
Springer
,
Cham, Switzerland
.
408.
Nie
,
J.
,
Wang
,
Y.
,
Li
,
Y.
, and
Chao
,
X.
,
2022
, “
Artificial Intelligence and Digital Twins in Sustainable Agriculture and Forestry: A Survey
,”
Turk. J. Agric. For.
,
46
(
5
), pp.
642
661
.
409.
Khan
,
A. H.
,
Omar
,
S.
,
Mushtary
,
N.
,
Verma
,
R.
,
Kumar
,
D.
, and
Alam
,
S.
,
2022
, “Digital Twin and Artificial Intelligence Incorporated with Surrogate Modeling for Hybrid and Sustainable Energy Systems,”
Handbook of Smart Energy Systems
,
M.
Fathi
,
E.
Zio
, and
P. M.
Pardalos
, eds.,
Springer
,
New York City
, pp.
1
23
.
410.
Shen
,
J.
,
Saini
,
P. K.
, and
Zhang
,
X.
,
2021
, “Machine Learning and Artificial Intelligence for Digital Twin to Accelerate Sustainability in Positive Energy Districts,”
Data-Driven Analytics for Sustainable Buildings and Cities: From Theory to Application
,
X.
Zhang
, ed.,
Springer
,
New York City
, pp.
411
422
.
411.
Rakshit
,
P.
,
Saha
,
N.
,
Nandi
,
S.
, and
Gupta
,
P.
,
2024
, “Artificial Intelligence in Digital Twins for Sustainable Future,”
Transforming Industry Using Digital Twin Technology
,
A.
Mishra
,
M.
El Barachi
, and
M.
Kumar
, eds.,
Springer
,
New York City
, pp.
19
44
.
412.
Strubell
,
E.
,
Ganesh
,
A.
, and
McCallum
,
A.
,
2020
, “
Energy and Policy Considerations for Modern Deep Learning Research
,” Proceedings of the AAAI Conference on Artificial Intelligence, New York City, Feb. 7–12, Vol. 34, pp.
13693
13696
.
413.
Crawford
,
K.
,
2021
,
The Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence
,
Yale University Press
,
New Haven, CT
.
414.
Weidinger
,
L.
,
Uesato
,
J.
,
Rauh
,
M.
,
Griffin
,
C.
,
Huang
,
P.-S.
,
Mellor
,
J.
,
Glaese
,
A.
, et al.,
2022
, “
Taxonomy of Risks Posed by Language Models
,” Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, Seoul, South Korea, June 21–24, pp.
214
229
.
415.
Jobin
,
A.
,
Ienca
,
M.
, and
Vayena
,
E.
,
2019
, “
The Global Landscape of AI Ethics Guidelines
,”
Nat. Mach. Intell.
,
1
(
9
), pp.
389
399
.
416.
Federal Energy Regulatory Commission
,
2024
, “2024 Summer Energy Market and Electric Reliability Assessment,”
Office of Energy Policy and Innovation and Office of Electric Reliability
, Washington, DC, Technical Report, https://www.ferc.gov/news-events/news/report-2024-summer-energy-market-and-electric-reliability-assessment
417.
Adeyemi
,
A.
,
2018
, “
Concrete Sustainability Issues
,”
38th Cement and Concrete Science Conference, Coventry
, UK, Sept. pp.
10
11
.
418.
Jahren
,
P.
, and
Sui
,
T.
,
2013
,
Concrete and Sustainability, CRC Press, Boca Raton, FL
.
419.
Kusuma
,
G. H.
,
Budidarmawan
,
J.
, and
Susilowati
,
A.
,
2015
, “
Impact of Concrete Quality on Sustainability
,”
Proc. Eng.
125, pp.
754
759
.
420.
de Brito
,
J.
and
Saikia
,
N.
,
2013
, “
Sustainable Development in Concrete Production
,”
Recycled Aggregate in Concrete: Use of Industrial, Construction and Demolition Waste
, J. de Brito, and N. Saikai, eds. pp.
1
22
.
421.
Tahanpour Javadabadi
,
M.
,
Kristiansen
,
D. D. L.
,
Redie
,
M. B.
,
Hajmohammadian and Baghban
,
M.
,
2019
, “
Sustainable Concrete: A Review
,”
Int. J. Struct. Civil Eng. Res.
,
8
(
2
), pp.
126
132
.
422.
Fishman
,
T.
,
2024
, “
The AI Revolution Rests on Billions of Tonnes of Concrete
,”
IEEE Spectrum
,
61
(
11
), pp.
58
69
.
423.
Ge
,
X.
,
Goodwin
,
R. T.
,
Yu
,
H.
,
Romero
,
P.
,
Abdelrahman
,
O.
,
Sudhalkar
,
A.
,
Kusuma
,
J.
,
Cialdella
,
R.
,
Garg
,
N.
, and
Varshney
,
L. R.
,
2022
, “
Accelerated Design and Deployment of Low-Carbon Concrete for Data Centers
,” Proceedings of the 5th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies, Seattle, WA, June 29–July 1, pp.
340
352
.
424.
Fichter
,
K.
, and
Hintemann
,
R.
,
2014
, “
Beyond Energy: The Quantities of Materials Present in the Equipment of Data Centers
,”
J. Ind. Ecol.
,
18
(
6
), pp.
846
858
.
425.
Alkrush
,
A. A.
,
Salem
,
M. S.
,
Abdelrehim
,
O.
, and
Hegazi
,
A.A.
,,
2024
, “
Data Centers Cooling: A Critical Review of Techniques, Challenges, and Energy Saving Solutions
,”
Int. J. Refrig.
,
160
, pp.
246
262
.
426.
Chien
,
A. A.
,
Lin
,
L.
,
Nguyen
,
H.
,
Rao
,
V.
,
Sharma
,
T.
, and
Wijayawardana
,
R.
,
2023
, “
Reducing the Carbon Impact of Generative AI Inference (Today and in 2035)
,” Proceedings of the 2nd Workshop on Sustainable Computer Systems, Boston, MA, July 9, pp.
1
7
.
427.
Alzoubi
,
Y. I.
, and
Mishra
,
A.
,
2024
, “
Green Artificial Intelligence Initiatives: Potentials and Challenges
,”
J. Cleaner Prod.
,
468
, p.
143090
.
428.
Luccioni
,
S.
,
Jernite
,
Y.
, and
Strubell
,
E.
,
2024
, “
Power Hungry Processing: Watts Driving the Cost of AI Deployment
,”
Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency
, Rio de Janeiro,
June 3–6
,
Brazil
, pp.
85
99
.
429.
Fiksel
,
J.
,
McDaniel
,
J.
, and
Spitzley
,
D.
,
1998
, “
Measuring Product Sustainability
,”
J. Sustainable Prod. Des.
,
6
(
7
), pp.
7
18
.
430.
Shuaib
,
M.
,
Seevers
,
D.
,
Zhang
,
X.
,
Badurdeen
,
F.
,
Rouch
,
K. E.
, and
Jawahir
,
I.
,
2014
, “
Product Sustainability Index (prodsi) a Metrics-Based Framework to Evaluate the Total Life Cycle Sustainability of Manufactured Products
,”
J. Ind. Ecol.
,
18
(
4
), pp.
491
507
.
431.
Klöpffer
,
W.
,
2008
, “
Life Cycle Sustainability Assessment of Products
,”
Int. J. Life Cycle Assess.
,
13
, pp.
89
95
.
432.
He
,
B.
,
Li
,
F.
,
Cao
,
X.
, and
Li
,
T.
,
2020
, “
Product Sustainable Design: A Review From the Environmental, Economic, and Social Aspects
,”
J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
040801
.
433.
Jia
,
W.
,
Wang
,
W.
, and
Zhang
,
Z.
,
2022
, “
From Simple Digital Twin to Complex Digital Twin Part I: A Novel Modeling Method for Multi-scale and Multi-scenario Digital Twin
,”
Adv. Eng. Inform.
,
53
, p.
101706
.
434.
Rasheed
,
A.
,
San
,
O.
, and
Kvamsdal
,
T.
,
2019
, “
Digital Twin: Values, Challenges and Enablers From a Modeling Perspective
,” IEEE Access
8
, pp.
21980
219812
.
435.
Malakuti
,
S.
,
2021
, “
Emerging Technical Debt in Digital Twin Systems
,” 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vasteras, Sweden, Sept. 7–10,
IEEE
, pp.
1
4
.
436.
Parmar
,
R.
,
Leiponen
,
A.
, and
Thomas
,
L. D.
,
2020
, “
Building an Organizational Digital Twin
,”
Business Horizons
,
63
(
6
), pp.
725
736
.
437.
Jamwal
,
A.
,
Agrawal
,
R.
,
Sharma
,
M.
, and
Giallanza
,
A.
,
2021
, “
Industry 4.0 Technologies for Manufacturing Sustainability: A Systematic Review and Future Research Directions
,”
Appl. Sci.
,
11
(
12
), p.
5725
.
438.
Delgado-Gomes
,
V.
,
Oliveira-Lima
,
J. A.
, and
Martins
,
J. F.
,
2017
, “
Energy Consumption Awareness in Manufacturing and Production Systems
,”
Int. J. Comput. Integr. Manuf.
,
30
(
1
), pp.
84
95
.
439.
Walther
,
J.
, and
Weigold
,
M.
,
2021
, “
A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry
,”
Energies
,
14
(
4
), p.
968
.
440.
Arif
,
J.
,
Samadhiya
,
A.
, and
Kumar
,
A.
,
2023
, “
Net Zero Supply Chain Performance and Industry 4.0 Technologies: Past Review and Present Introspective Analysis for Future Research Directions
,”
Heliyon
,
9
(
11
).
441.
Mosconi
,
E. M.
,
Colantoni
,
A.
, and
Tarantino
,
M.
,
2024
, “Strategies for Enhancing the Efficiency of Packaging and Managing Packaging Waste in Compliance with Regulations,”
Waste Management for a Sustainable Future-Technologies, Strategies and Global Perspectives
,
P. H. M.
Saleh
, and
P. A. I.
Hassan
, eds.,
IntechOpen
,
London, UK
.
442.
Chungyalpa
,
W.
, and
von Rosing
,
M.
,
2025
, “Understanding Business Sustainability: The what, Why, and How of Sustainable Business Practices,”
The Sustainability Handbook
, Vol. 1,
Elsevier
,
Netherlands
, pp.
579
600
.
443.
Kaplan
,
I.
,
2023
, “Why Manufacturers Should Use Digital Twins for Sustainability Not Just Productivity,”
World Economic Forum
, Geneva, Switzerland, Technical Report, https://www.weforum.org/agenda/2023/05/digital-twins-manufacturing-sustainability/
444.
Yu
,
W.
,
Patros
,
P.
,
Young
,
B.
,
Klinac
,
E.
, and
Walmsley
,
T. G.
,
2022
, “
Energy Digital Twin Technology for Industrial Energy Management: Classification, Challenges and Future
,”
Renewable Sustainable Energy. Rev.
,
161
, p.
112407
.
445.
He
,
B.
, and
Mao
,
H.
,
2023
, “
Digital Twin-driven Product Sustainable Design for Low Carbon Footprint
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060805
.
446.
Chen
,
C.
,
Zhao
,
Z.
,
Xiao
,
J.
, and
Tiong
,
R.
,
2021
, “
A Conceptual Framework for Estimating Building Embodied Carbon Based on Digital Twin Technology and Life Cycle Assessment
,”
Sustainability
,
13
(
24
), p.
13875
.
447.
Van Geet
,
O.
, and
Sickinger
,
D.
,
2024
, “Best Practices Guide for Energy-Efficient Data Center Design,”
Department of Energy, Federal Energy Management Program
, Washington, DC, Technical Report, https://www.energy.gov/femp/articles/best-practices-guide-energy-efficient-data-center-design
448.
Gehrmann
,
C.
, and
Gunnarsson
,
M.
,
2019
, “
A Digital Twin Based Industrial Automation and Control System Security Architecture
,”
IEEE Trans. Ind. Inf.
,
16
(
1
), pp.
669
680
.
449.
Karaarslan
,
E.
, and
Babiker
,
M.
,
2021
, “
Digital Twin Security Threats and Countermeasures: An Introduction
,” 2021 International Conference on Information Security and Cryptology (ISCTURKEY), Ankara, Turkey, Dec. 2–3,
IEEE
, pp.
7
11
.
450.
Chaplin
,
J. C.
,
Martinez-Arellano
,
G.
, and
Mazzoleni
,
A.
,
2020
, “Digital Twins and Intelligent Decision Making,”
Digital Manufacturing for SMEs—An Introduction
,
J. C.
Chaplin
,
C.
Pagano
, and
S.
Fort
, eds.,
European Union
, pp.
159
186
. 978-0-85358-339-4
451.
Trauer
,
J.
,
Schweigert-Recksiek
,
S.
,
Schenk
,
T.
,
Baudisch
,
T.
,
Mörtl
,
M.
, and
Zimmermann
,
M.
,
2022
, “
A Digital Twin Trust Framework for Industrial Application
,”
International Design Conference
,
Cavtat, Croatia
,
May 23–26
.
452.
Bitencourt
,
J.
,
Osho
,
J.
,
Harris
,
G.
,
Purdy
,
G.
, and
Moreira
,
A. C.
,
2023
, “
Building Trust in Digital Twin Through Verification and Validation
,” IISE Annual Conference. Proceedings, New Orleans, LA, May 21–23,
Institute of Industrial and Systems Engineers (IISE)
, pp.
1
6
.
453.
Lu
,
Y.
,
Huang
,
X.
,
Zhang
,
K.
,
Maharjan
,
S.
, and
Zhang
,
Y.
,
2020
, “
Low-Latency Federated Learning and Blockchain for Edge Association in Digital Twin Empowered 6g Networks
,”
IEEE Trans. Ind. Inf.
,
17
(
7
), pp.
5098
5107
.
454.
Bowman
,
B.
, and
Huang
,
H. H.
,
2021
, “
Towards Next-Generation Cybersecurity With Graph AI
,”
ACM SIGOPS Oper. Syst. Rev.
,
55
(
1
), pp.
61
67
.
455.
Dhillon
,
D.
,
2011
, “
Developer-driven Threat Modeling: Lessons Learned in the Trenches
,”
IEEE Secur. Privacy
,
9
(
4
), pp.
41
47
.
456.
Ingalsbe
,
J. A.
,
Kunimatsu
,
L.
,
Baeten
,
T.
, and
Mead
,
N. R.
,
2008
, “
Threat Modeling: Diving Into the Deep End
,”
IEEE Software
,
25
(
1
), pp.
28
34
.
457.
Yskout
,
K.
,
Heyman
,
T.
,
Van Landuyt
,
D.
,
Sion
,
L.
,
Wuyts
,
K.
, and
Joosen
,
W.
,
2020
, “
Threat Modeling: From Infancy to Maturity
,” Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results, Seoul, South Korea, June 27–July 19, pp.
9
12
.
458.
Microsoft
,
2024
, “Microsoft Threat Modeling Tool Overview,” microsoft.com/en-us/azure/security/develop/threat-modeling-tool
459.
Elsharef
,
I.
,
Zeng
,
Z.
, and
Gu
,
Z.
,
2024
, “
Facilitating Threat Modeling by Leveraging Large Language Models
,” Proceedings 2024 Workshop on AI Systems with Confidential Computing, San Diego, CA, Feb. 26. .
460.
Moore
,
S.
,
2021
, How to Set Practical Time Frames to Remedy Security Vulnerabilities, https://www.gartner.com/smarterwithgartner/how-to-set-practical-time-frames-to-remedy-security-vulnerabilities.
461.
Jacobs
,
J.
,
Romanosky
,
S.
,
Adjerid
,
I.
, and
Baker
,
W.
,
2020
, “
Improving Vulnerability Remediation Through Better Exploit Prediction
,”
J. Cybersecur.
,
6
(
1
), p.
tyaa015
.
462.
Sabottke
,
C.
,
Suciu
,
O.
, and
Dumitraş
,
T.
,
2015
, “
Vulnerability Disclosure in the Age of Social Media: Exploiting Twitter for Predicting {Real-World} Exploits
,” 24th USENIX Security Symposium (USENIX Security 15), Austin, TX, Aug. 10–12, pp.
1041
1056
.
463.
Zeng
,
Z.
,
Yang
,
Z.
,
Huang
,
D.
, and
Chung
,
C.-J.
,
2021
, “
Licality—Likelihood and Criticality: Vulnerability Risk Prioritization Through Logical Reasoning and Deep Learning
,”
IEEE Trans. Network Serv. Manage.
,
19
(
2
), pp.
1746
1760
.
464.
Alperin
,
K.
,
Wollaber
,
A.
,
Ross
,
D.
,
Trepagnier
,
P.
, and
Leonard
,
L.
,
2019
, “
Risk Prioritization by Leveraging Latent Vulnerability Features in a Contested Environment
,” Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, London, UK, Nov. 15, pp.
49
57
.
465.
Zeng
,
Z.
,
Huang
,
D.
,
Xue
,
G.
,
Deng
,
Y.
,
Vadnere
,
N.
, and
Xie
,
L.
,
2023
, “
Illation: Improving Vulnerability Risk Prioritization by Learning From Network
,”
IEEE Trans. Dependable Secure Comput.
,
21
(
4
), pp.
1890
1901
.
466.
Jensen
,
D.
,
Van Bossuyt
,
D. L.
,
Bello
,
O.
,
O’Halloran
,
B. M.
, and
Papakonstantinou
,
N.
,
2024
, “
A Survey of Function Failure Identification and Propagation Analysis Methods for System Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
9
), p.
090801
.
467.
Daly
,
N.
,
Manvi
,
P.
,
Chhatbar
,
T.
,
Schmid
,
M.
,
Castanier
,
M. P.
, and
Wagner
,
J.
,
2024
, “Modeling & Validation of a Digital Twin Tracked Vehicle,”
SAE
, Technical Report.
468.
Razdan
,
R.
,
Akbaş
,
M. İ.
,
Sell
,
R.
,
Bellone
,
M.
,
Menase
,
M.
, and
Malayjerdi
,
M.
,
2023
, “
Polyverif: An Open-Source Environment for Autonomous Vehicle Validation and Verification Research Acceleration
,”
IEEE Access
,
11
, pp.
28343
28354
.
469.
Worden
,
K.
,
Cross
,
E.
,
Barthorpe
,
R.
,
Wagg
,
D.
, and
Gardner
,
P.
,
2020
, “
On Digital Twins, Mirrors, and Virtualizations: Frameworks for Model Verification and Validation
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
6
(
3
), p.
030902
.
470.
Perisic
,
A.
, and
Perisic
,
B.
,
2024
, “
Digital Twins Verification and Validation Approach Through the Quintuple Helix Conceptual Framework
,”
Electronics
,
13
(
16
), p.
3303
.
471.
Bitencourt
,
J.
,
Wooley
,
A.
, and
Harris
,
G.
,
2024
, “
Verification and Validation of Digital Twins: A Systematic Literature Review for Manufacturing Applications
,”
Int. J. Prod. Res.
,
63
(
1
), pp.
342
370
.
472.
VanDerHorn
,
E.
, and
Mahadevan
,
S.
,
2021
, “
Digital Twin: Generalization, Characterization and Implementation
,”
Decis. Support Syst.
,
145
, p.
113524
.
473.
Jiang
,
H.
,
Qin
,
S.
,
Fu
,
J.
,
Zhang
,
J.
, and
Ding
,
G.
,
2021
, “
How to Model and Implement Connections Between Physical and Virtual Models for Digital Twin Application
,”
J. Manuf. Syst.
,
58
(
Part B
), pp.
36
51
.
474.
Wagg
,
D.
,
Worden
,
K.
,
Barthorpe
,
R.
, and
Gardner
,
P.
,
2020
, “
Digital Twins: State-of-the-Art and Future Directions for Modeling and Simulation in Engineering Dynamics Applications
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
6
(
3
), p.
030901
.
475.
Desai
,
A. S.
,
Navaneeth
,
N.
,
Adhikari
,
S.
, and
Chakraborty
,
S.
,
2023
, “
Enhanced Multi-fidelity Modeling for Digital Twin and Uncertainty Quantification
,”
Probabilistic Eng. Mech.
,
74
, p.
103525
.
476.
Pang
,
T. Y.
,
Pelaez Restrepo
,
J. D.
,
Cheng
,
C. -T.
,
Yasin
,
A.
,
Lim
,
H.
, and
Miletic
,
M.
,
2021
, “
Developing a Digital Twin and Digital Thread Framework for an “industry 4.0’shipyard”
,”
Appl. Sci.
,
11
(
3
), p.
1097
.
477.
Javaid
,
M.
,
Haleem
,
A.
, and
Suman
,
R.
,
2023
, “
Digital Twin Applications Toward Industry 4.0: A Review
,”
Cognit. Rob.
,
3
, pp.
71
92
.
478.
Kober
,
C.
,
Adomat
,
V.
,
Ahanpanjeh
,
M.
,
Fette
,
M.
, and
Wulfsberg
,
J. P.
,
2022
, “
Digital Twin Fidelity Requirements Model for Manufacturing
,” Proceedings of the Conference on Production Systems and Logistics: CPSL 2022, Vancouver, Canada, May 17–20, Hannover, pp.
595
611
.
479.
García
,
Á.
,
Bregon
,
A.
, and
Martínez-Prieto
,
M. A.
,
2022
, “
Towards a Connected Digital Twin Learning Ecosystem in Manufacturing: Enablers and Challenges
,”
Comput. Ind. Eng.
,
171
, p.
108463
.
480.
Brunswick
,
S.
,
2022
, “The Workforce Needed to Support Digital Twins in the Global Space Ecosystem: Advocating for Innovation, Bettering Life on Earth,”
Impact of Digital Twins in Smart Cities Development
,
I.
Vasiliu-Feltes
, ed.,
IGI Global
,
Hershey, PA
, pp.
150
173
.
481.
Hazrat
,
M.
,
Hassan
,
N.
,
Chowdhury
,
A. A.
,
Rasul
,
M.
, and
Taylor
,
B. A.
,
2023
, “
Developing a Skilled Workforce for Future Industry Demand: The Potential of Digital Twin-Based Teaching and Learning Practices in Engineering Education
,”
Sustainability
,
15
(
23
), p.
16433
.
482.
Zhang
,
J.
,
Zhu
,
J.
,
Tu
,
W.
,
Wang
,
M.
,
Yang
,
Y.
,
Qian
,
F.
, and
Xu
,
Y.
,
2024
, “
The Effectiveness of a Digital Twin Learning System in Assisting Engineering Education Courses: A Case of Landscape Architecture
,”
Appl. Sci.
,
14
(
15
), p.
6484
.
483.
Ezeoguine
,
P. E.
, and
Kasumu
,
R. Y.
,
2024
, “
Undergraduate Students’ Perception of Digital Twins Technology in Education: Uses and Challenges
,”
Int. J. Educ. Eval.
,
10
(
2
), pp.
381
396
.
484.
Lin
,
Y.-Z.
,
Alhamadah
,
A. H. J.
,
Redondo
,
M. W.
,
Patel
,
K. H.
,
Ghimire
,
S.
,
Latibari
,
B. S.
,
Salehi
,
S.
, and
Satam
,
P.
,
2024
, “Transforming Engineering Education Using Generative AI and Digital Twin Technologies,” preprint arXiv:2411.14433.
485.
Longo
,
F.
,
Padovano
,
A.
,
De Felice
,
F.
,
Petrillo
,
A.
, and
Elbasheer
,
M.
,
2023
, “
From “Prepare for the Unknown” to “Train for what’s Coming”: A Digital Twin-driven and Cognitive Training Approach for the Workforce of the Future in Smart Factories
,”
J. Ind. Inf. Integr.
,
32
, p.
100437
.
486.
Araujo
,
C. E.
,
Gross
,
D. C.
,
Steurer
,
M.
,
Schegan
,
C.
,
Ali
,
N.
,
Bosworth
,
M.
,
Bush
,
J.
,
Schoder
,
K.
, and
Song
,
S.
,
2024
, “
Baselining a Functional Architecture for a Power Electronic Power Distribution System for Navy Vessels
,”
IEEE Trans. Transp. Electrif.
,
10
(
4
), pp.
7862
7872
.
487.
Yigit
,
Y.
,
Kioskli
,
K.
,
Bishop
,
L.
,
Chouliaras
,
N.
,
Maglaras
,
L.
, and
Janicke
,
H.
,
2024
, “
Enhancing Cybersecurity Training Efficacy: A Comprehensive Analysis of Gamified Learning, Behavioral Strategies and Digital Twins
,” 2024 IEEE 25th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Perth, Australia, June 4–7,
IEEE
, pp.
24
32
.
488.
Bordegoni
,
M.
, and
Ferrise
,
F.
,
2023
, “
Exploring the Intersection of Metaverse, Digital Twins, and Artificial Intelligence in Training and Maintenance
,”
J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060806
.
489.
Jones
,
D.
,
Snider
,
C.
,
Nassehi
,
A.
,
Yon
,
J.
, and
Hicks
,
B.
,
2020
, “
Characterising the Digital Twin: A Systematic Literature Review
,”
CIRP J. Manuf. Sci. Technol.
,
29
(
Part A
), pp.
36
52
.
490.
Errandonea
,
I.
,
Beltrán
,
S.
, and
Arrizabalaga
,
S.
,
2020
, “
Digital Twin for Maintenance: A Literature Review
,”
Comput. Ind.
,
123
, p.
103316
.
491.
Opoku
,
D.-G. J.
,
Perera
,
S.
,
Osei-Kyei
,
R.
, and
Rashidi
,
M.
,
2021
, “
Digital Twin Application in the Construction Industry: A Literature Review
,”
J. Build. Eng.
,
40
, p.
102726
.
492.
Melesse
,
T. Y.
,
Di Pasquale
,
V.
, and
Riemma
,
S.
,
2020
, “
Digital Twin Models in Industrial Operations: A Systematic Literature Review
,”
Procedia Manuf.
,
42
, pp.
267
272
.
493.
Shahat
,
E.
,
Hyun
,
C. T.
, and
Yeom
,
C.
,
2021
, “
City Digital Twin Potentials: A Review and Research Agenda
,”
Sustainability
,
13
(
6
), p.
3386
.
494.
Deng
,
S.
,
Ling
,
L.
,
Zhang
,
C.
,
Li
,
C.
,
Zeng
,
T.
,
Zhang
,
K.
, and
Guo
,
G.
,
2023
, “
A Systematic Review on the Current Research of Digital Twin in Automotive Application
,”
Internet Things Cyber-Phys. Syst.
,
3
, pp.
180
191
.
495.
Sleiti
,
A. K.
,
Kapat
,
J. S.
, and
Vesely
,
L.
,
2022
, “
Digital Twin in Energy Industry: Proposed Robust Digital Twin for Power Plant and Other Complex Capital-Intensive Large Engineering Systems
,”
Energy Rep.
,
8
, pp.
3704
3726
.
496.
Xu
,
B.
,
Wang
,
J.
,
Wang
,
X.
,
Liang
,
Z.
,
Cui
,
L.
,
Liu
,
X.
, and
Ku
,
A. Y.
,
2019
, “
A Case Study of Digital-Twin-Modelling Analysis on Power-Plant-Performance Optimizations
,”
Clean Energy
,
3
(
3
), pp.
227
234
.
497.
Calvo-Bascones
,
P.
,
Voisin
,
A.
,
Do
,
P.
, and
Sanz-Bobi
,
M. A.
,
2023
, “
A Collaborative Network of Digital Twins for Anomaly Detection Applications of Complex Systems. Snitch Digital Twin Concept
,”
Comput. Ind.
,
144
, p.
103767
.
498.
Magee
,
C.
, and
de Weck
,
O.
,
2004
, “Complex System Classification,” International Symposium, International Council On Systems Engineering (INCOSE), vol. 14, pp.
471
488
. Toulouse, France, June 20–24.
499.
McDonough
,
W.
,
Braungart
,
M.
,
Anastas
,
P. T.
, and
Zimmerman
,
J. B.
,
2003
, “
Peer Reviewed: Applying the Principles of Green Engineering to Cradle-to-Cradle Design
,”
Environ. Sci. Technol.
,
37
(
23
), pp.
434A
441A
.
500.
McDonough
,
W.
, and
Braungart
,
M.
,
2002
,
Cradle to Cradle: Remaking the Way We Make Things
,
North Point Press
,
New York
.
501.
Gray
,
C.
, and
Charter
,
M.
,
2007
, “Remanufacturing and Product Design,”
Int. J. Prod. Develop.
,
6
(
3/4
), p. 375.
502.
Go
,
T. F.
,
Wahab
,
D. A.
, and
Hishamuddin
,
H.
,
2015
, “
Multiple Generation Life-Cycles for Product Sustainability: The Way Forward
,”
J. Cleaner Prod.
,
95
, pp.
16
29
.
503.
Kirchherr
,
J.
,
Reike
,
D.
, and
Hekkert
,
M.
,
2017
, “
Conceptualizing the Circular Economy: An Analysis of 114 Definitions
,”
Resour. Conserv. Recycl.
,
127
, pp.
221
232
.
504.
Geissdoerfer
,
M.
,
Savaget
,
P.
,
Bocken
,
N. M.
, and
Hultink
,
E. J.
,
2017
, “
The Circular Economy—A New Sustainability Paradigm?
J. Cleaner Prod.
,
143
, pp.
757
768
.
505.
Korhonen
,
J.
,
Honkasalo
,
A.
, and
Seppälä
,
J.
,
2018
, “
Circular Economy: The Concept and Its Limitations
,”
Ecol. Econ.
,
143
, pp.
37
46
.
You do not currently have access to this content.