Abstract

Augmented reality (AR) has been applied to facilitate human–robot collaboration in manufacturing. It enhances real-time communication and interaction between humans and robots as a new paradigm of interface. This research conducts an experimental study to systematically evaluate and compare various input modality designs based on hand gestures, eye gaze, head movements, and voice in industrial robot programming. These modalities allow users to perform common robot planning tasks from a distance through an AR headset, including pointing, tracing, 1D rotation, 3D rotation, and switch state. Statistical analyses of both objective and subjective measures collected from the experiment reveal the relative effectiveness of each modality design in assisting individual tasks in terms of positional deviation, operational efficiency, and usability. A verification test on programming a robot to complete a pick-and-place procedure not only demonstrates the practicality of these modality designs but also confirms their cross-comparison results. Significant findings from the experimental study provide design guidelines for AR input modalities that assist in planning robot motions.

References

1.
Mourtzis
,
D.
,
Angelopoulos
,
J.
, and
Panopoulos
,
N.
,
2022
, “
Operator 5.0: A Survey on Enabling Technologies and a Framework for Digital Manufacturing Based on Extended Reality
,”
J. Mach. Eng.
,
22
(
1
), pp.
43
69
.
2.
Li
,
S.
,
Wang
,
R.
,
Zheng
,
P.
, and
Wang
,
L.
,
2021
, “
Towards Proactive Human–Robot Collaboration: A Foreseeable Cognitive Manufacturing Paradigm
,”
J. Manuf. Syst.
,
60
, pp.
547
552
.
3.
Baroroh
,
D. K.
,
Chu
,
C. H.
, and
Wang
,
L.
,
2021
, “
Systematic Literature Review on Augmented Reality in Smart Manufacturing: Collaboration Between Human and Computational Intelligence
,”
J. Manuf. Syst.
,
61
, pp.
696
711
.
4.
Chu
,
C. H.
,
Liu
,
Y. W.
,
Li
,
P. C.
,
Huang
,
L. C.
, and
Luh
,
Y. P.
,
2020
, “
Programming by Demonstration in Augmented Reality for the Motion Planning of a Three-Axis CNC Dispenser
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
7
(
5
), pp.
987
995
.
5.
Ong
,
S. K.
,
Yew
,
A. W. W.
,
Thanigaivel
,
N. K.
, and
Nee
,
A. Y.
,
2020
, “
Augmented Reality-Assisted Robot Programming System for Industrial Applications
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101820
.
6.
Aivaliotis
,
S.
,
Lotsaris
,
K.
,
Gkournelos
,
C.
,
Fourtakas
,
N.
,
Koukas
,
S.
,
Kousi
,
N.
, and
Makris
,
S.
,
2023
, “
An Augmented Reality Software Suite Enabling Seamless Human Robot Interaction
,”
Int. J. Comput. Integr. Manuf.
,
36
(
1
), pp.
3
29
.
7.
Chu
,
C. H.
, and
Weng
,
C. Y.
,
2024
, “
Experimental Analysis of Augmented Reality Interfaces for Robot Programming by Demonstration in Manufacturing
,”
J. Manuf. Syst.
,
74
, pp.
463
476
.
8.
Dhanaraj
,
N.
,
Yoon
,
Y. J.
,
Malhan
,
R.
,
Bhatt
,
P. M.
,
Thakar
,
S.
, and
Gupta
,
S. K.
,
2022
, “
A Mobile Manipulator System for Accurate and Efficient Spraying on Large Surfaces
,”
Procedia Comput. Sci.
,
200
, pp.
1528
1539
.
9.
Fang
,
H. C.
,
Ong
,
S. K.
, and
Nee
,
A. Y. C.
,
2012
, “
Interactive Robot Trajectory Planning and Simulation Using Augmented Reality
,”
Rob. Comput. Integr. Manuf.
,
28
(
2
), pp.
227
237
.
10.
Ostanin
,
M.
, and
Klimchik
,
A.
,
2018
, “
Interactive Robot Programming Using Mixed Reality
,”
IFAC-PapersOnLine
,
51
(
22
), pp.
50
55
.
11.
Ostanin
,
M.
,
Mikhel
,
S.
,
Evlampiev
,
A.
,
Skvortsova
,
V.
, and
Klimchik
,
A.
,
2020
, “
Human-Robot Interaction for Robotic Manipulator Programming in Mixed Reality
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
, pp.
2805
2811
.
12.
Rudorfer
,
M.
,
Guhl
,
J.
,
Hoffmann
,
P.
, and
Krüger
,
J.
,
2018
, “
Holo Pick'n'Place
,”
2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)
, Vol.
1
,
IEEE
, pp.
1219
1222
.
13.
Soares
,
I.
,
Petry
,
M.
, and
Moreira
,
A. P.
,
2021
, “
Programming Robots by Demonstration Using Augmented Reality
,”
Sensors
,
21
(
17
), p.
5976
.
14.
Monteiro
,
P.
,
Gonçalves
,
G.
,
Coelho
,
H.
,
Melo
,
M.
, and
Bessa
,
M.
,
2021
, “
Hands-Free Interaction in Immersive Virtual Reality: A Systematic Review
,”
IEEE Trans. Visual. Comput. Graphics
,
27
(
5
), pp.
2702
2713
.
15.
Spittle
,
B.
,
Frutos-Pascual
,
M.
,
Creed
,
C.
, and
Williams
,
I.
,
2022
, “
A Review of Interaction Techniques for Immersive Environments
,”
IEEE Trans. Visual. Comput. Graphics
,
29
(
9
), pp.
3900
3921
.
16.
Frutos-Pascual
,
M.
,
Creed
,
C.
, and
Williams
,
I.
,
2019
, “
Head Mounted Display Interaction Evaluation: Manipulating Virtual Objects in Augmented Reality
,”
Human-Computer Interaction–INTERACT 2019, Proceedings, Part IV 17
, pp.
287
308
.
17.
Piumsomboon
,
T.
,
Altimira
,
D.
,
Kim
,
H.
,
Clark
,
A.
,
Lee
,
G.
, and
Billinghurst
,
M.
,
2014
, “
Grasp-Shell Vs Gesture-Speech: A Comparison of Direct and Indirect Natural Interaction Techniques in Augmented Reality
,”
2014 IEEE International Symposium on Mixed and Augmented Reality
, pp.
73
82
.
18.
Özacar
,
K.
,
Hincapié-Ramos
,
J. D.
,
Takashima
,
K.
, and
Kitamura
,
Y.
,
2017
, “
3D Selection Techniques for Mobile Augmented Reality Head-Mounted Displays
,”
Interact. Comput.
,
29
(
4
), pp.
579
591
.
19.
Whitlock
,
M.
,
Harnner
,
E.
,
Brubaker
,
J. R.
,
Kane
,
S.
, and
Szafir
,
D. A.
,
2018
, “
Interacting With Distant Objects in Augmented Reality
,”
2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
,
IEEE
, pp.
41
48
.
20.
Mamone
,
V.
,
Ferrari
,
V.
,
D’Amato
,
R.
,
Condino
,
S.
,
Cattari
,
N.
, and
Cutolo
,
F.
,
2023
, “
Head-Mounted Projector for Manual Precision Tasks: Performance Assessment
,”
Sensors
,
23
(
7
), p.
3494
.
21.
Qian
,
Y. Y.
, and
Teather
,
R. J.
,
2017
, “
The Eyes Don't Have It: An Empirical Comparison of Head-Based and Eye-Based Selection in Virtual Reality
,”
Proceedings of the 5th Symposium on Spatial User Interaction
, pp.
91
98
.
22.
Kytö
,
M.
,
Ens
,
B.
,
Piumsomboon
,
T.
,
Lee
,
G. A.
, and
Billinghurst
,
M.
,
2018
, “
Pinpointing: Precise Head-and Eye-Based Target Selection for Augmented Reality
,”
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
, pp.
1
14
.
23.
Minakata
,
K.
,
Hansen
,
J. P.
,
MacKenzie
,
I. S.
,
Bækgaard
,
P.
, and
Rajanna
,
V.
,
2019
, “
Pointing by Gaze, Head, and Foot in a Head-Mounted Display
,”
Proceedings of the 11th ACM Symposium on eye Tracking Research & Applications
, pp.
1
9
.
24.
Chittaro
,
L.
, and
Sioni
,
R.
,
2019
, “
Selecting Menu Items in Mobile Head-Mounted Displays: Effects of Selection Technique and Active Area
,”
Int. J. Hum.–Comput. Interact.
,
35
(
16
), pp.
1501
1516
.
25.
Williams
,
A. S.
,
Garcia
,
J.
, and
Ortega
,
F.
,
2020
, “
Understanding Multimodal User Gesture and Speech Behavior for Object Manipulation in Augmented Reality Using Elicitation
,”
IEEE Trans. Visualization Comput. Graph.
,
26
(
12
), pp.
3479
3489
.
26.
Streichert
,
A.
,
Angerbauer
,
K.
,
Schwarzl
,
M.
, and
Sedlmair
,
M.
,
2020
, “
Comparing Input Modalities for Shape Drawing Tasks
,”
ACM Symposium on Eye Tracking Research and Applications
, pp.
1
5
.
27.
Sadri
,
S.
,
Kohen
,
S. A.
,
Elvezio
,
C.
,
Sun
,
S. H.
,
Grinshpoon
,
A.
,
Loeb
,
G. J.
,
Basu
,
N.
, and
Feiner
,
S. K.
,
2019
, “
Manipulating 3D Anatomic Models in Augmented Reality: Comparing a Hands-Free Approach and a Manual Approach
,”
2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
,
IEEE
, pp.
93
102
.
28.
Smith
,
J.
,
Wang
,
I.
,
Woodward
,
J.
, and
Ruiz
,
J.
,
2019
, “
Experimental Analysis of Single Mode Switching Techniques in Augmented Reality
,”
Graphics Interface
, p.
20-1
.
29.
Wang
,
Z.
,
Wang
,
H.
,
Yu
,
H.
, and
Lu
,
F.
,
2021
, “
Interaction With Gaze, Gesture, and Speech in a Flexibly Configurable Augmented Reality System
,”
IEEE Trans. Hum. Mach. Syst.
,
51
(
5
), pp.
524
534
.
30.
Shi
,
R.
,
Zhu
,
N.
,
Liang
,
H. N.
, and
Zhao
,
S.
,
2021
, “
Exploring Head-Based Mode-Switching in Virtual Reality
,”
2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
,
IEEE
, pp.
118
127
.
31.
Heidemann
,
G.
,
Bax
,
I.
, and
Bekel
,
H.
,
2004
, “
Multimodal Interaction in an Augmented Reality Scenario
,”
Proceedings of the 6th International Conference on Multimodal Interfaces
, p.
53
.
32.
Williams
,
A. S.
, and
Ortega
,
F. R.
,
2020
, “
Understanding Gesture and Speech Multimodal Interactions for Manipulation Tasks in Augmented Reality Using Unconstrained Elicitation
,”
Proc. ACM Hum. Comput. Interact.
,
4
(
ISS
), pp.
1
21
.
33.
Wang
,
I. J.
,
Yeh
,
L.
,
Chu
,
C. H.
, and
Huang
,
Y. T.
,
2024
, “
Assistive Sensory Feedback for Trajectory Tracking in Augmented Reality
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
3
), p.
031001
.
34.
Chu
,
C. H.
, and
Liu
,
Y. L.
,
2023
, “
Augmented Reality User Interface Design and Experimental Evaluation for Human-Robot Collaborative Assembly
,”
J. Manuf. Syst.
,
68
, pp.
313
324
.
35.
Chadalavada
,
R. T.
,
Andreasson
,
H.
,
Schindler
,
M.
,
Palm
,
R.
, and
Lilienthal
,
A. J.
,
2020
, “
Bi-Directional Navigation Intent Communication Using Spatial Augmented Reality and Eye-Tracking Glasses for Improved Safety in Human–Robot Interaction
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101830
.
36.
Andronas
,
D.
,
Apostolopoulos
,
G.
,
Fourtakas
,
N.
, and
Makris
,
S.
,
2021
, “
Multi-modal Interfaces for Natural Human-Robot Interaction
,”
Procedia Manuf.
,
54
, pp.
197
202
.
37.
Gkournelos
,
C.
,
Karagiannis
,
P.
,
Kousi
,
N.
,
Michalos
,
G.
,
Koukas
,
S.
, and
Makris
,
S.
,
2018
, “
Application of Wearable Devices for Supporting Operators in Human-Robot Cooperative Assembly Tasks
,”
Proc. CIRP
,
76
, pp.
177
182
.
38.
Frutos-Pascual
,
M.
,
Creed
,
C.
, and
Williams
,
I.
,
2019
, “
Head Mounted Display Interaction Evaluation: Manipulating Virtual Objects in Augmented Reality
,”
Human-Computer Interaction–INTERACT 2019: 17th IFIP TC 13 International Conference
,
Paphos, Cyprus
,
Sept. 2–6
,
Springer International Publishing
, pp.
287
308
.
39.
Plopski
,
A.
,
Hirzle
,
T.
,
Norouzi
,
N.
,
Qian
,
L.
,
Bruder
,
G.
, and
Langlotz
,
T.
,
2022
, “
The Eye in Extended Reality: A Survey on Gaze Interaction and Eye Tracking in Head-Worn Extended Reality
,”
ACM Comput. Surveys (CSUR)
,
55
(
3
), pp.
1
39
.
40.
Hecht
,
D.
, and
Reiner
,
M.
,
2009
, “
Sensory Dominance in Combinations of Audio, Visual and Haptic Stimuli
,”
Exp. Brain Res.
,
193
(
2
), pp.
307
314
.
41.
Van Ee
,
R.
,
Van Boxtel
,
J. J.
,
Parker
,
A. L.
, and
Alais
,
D.
,
2009
, “
Multisensory Congruency as a Mechanism for Attentional Control Over Perceptual Selection
,”
J. Neurosci.
,
29
(
37
), pp.
11641
11649
.
42.
Ernst
,
M. O.
,
2006
, “A Bayesian View on Multimodal cue Integration,”
Human Body Perception From the Inside Out
, Vol.
131
,
G.
Knoblich
,
I. M.
Thornton
,
M.
Grosjean
, and
M.
Shiffrar
, eds.,
Oxford University Press.
, pp.
105
131
.
You do not currently have access to this content.