Abstract

Some industrial components, such as valves, relay switches, and motors, occasionally experience intermittent faults (IFs) that usually disappear without any repair or intervention. This phenomenon occurs at a relatively low frequency even in components that are in an “as-good-as-new” state. However, an increase in the frequency of IFs often indicates the onset of degradation. We develop an integrated detection-prognostics model for components that exhibit IFs and whose degradation data are high-dimensional. We discuss the use of dynamic time warping (DTW) and a variational autoencoder (VAE) to perform feature engineering on the data. We then propose a hidden Markov model (HMM)-based monitoring strategy composed of two parts: (1) a detection model that tracks and flags changes in the intermittent fault frequency (IFF) and (2) a prognostic model that leverages how the transition probabilities of the HMM evolve with progressive degradation to compute the remaining life distribution (RLD) of the component. We examine the performance of our modeling framework using high-dimensional data generated from a vehicular electrical system testbed designed to accelerate the degradation of a vehicle starter motor.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
314
334
.
2.
de Novaes Pires Leite
,
G.
,
Araújo
,
A. M.
, and
Rosas
,
P. A. C.
,
2018
, “
Prognostic Techniques Applied to Maintenance of Wind Turbines: A Concise and Specific Review
,”
Renew. Sustain. Energy Rev.
,
81
, pp.
1917
1925
.
3.
Rezvanizaniani
,
S. M.
,
Liu
,
Z.
,
Chen
,
Y.
, and
Lee
,
J.
,
2014
, “
Review and Recent Advances in Battery Health Monitoring and Prognostics Technologies for Electric Vehicle (EV) Safety and Mobility
,”
J. Power Sources
,
256
, pp.
110
124
.
4.
Sutharssan
,
T.
,
Stoyanov
,
S.
,
Bailey
,
C.
, and
Yin
,
C.
,
2015
, “
Prognostic and Health Management for Engineering Systems: A Review of the Data-Driven Approach and Algorithms
,”
J. Eng.
,
2015
(
7
), pp.
215
222
.
5.
Xiao
,
C.
,
Yu
,
M.
,
Zhang
,
B.
,
Wang
,
H.
, and
Jiang
,
C.
,
2021
, “
Discrete Component Prognosis for Hybrid Systems Under Intermittent Faults
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
4
), pp.
1766
1777
.
6.
Zhou
,
D.
,
Zhao
,
Y.
,
Wang
,
Z.
,
He
,
X.
, and
Gao
,
M.
,
2020
, “
Review on Diagnosis Techniques for Intermittent Faults in Dynamic Systems
,”
IEEE Trans. Ind. Electron.
,
67
(
3
), pp.
2337
2347
.
7.
Xiao
,
C.
,
Yu
,
M.
,
Wang
,
H.
,
Zhang
,
B.
, and
Wang
,
D.
,
2022
, “
Prognosis of Electric Scooter With Intermittent Faults: Dual Degradation Processes Approach
,”
IEEE Trans. Veh. Technol.
,
71
(
2
), pp.
1411
1425
.
8.
Correcher
,
A.
,
Garcia
,
E.
,
Morant
,
F.
,
Blasco-Gimenez
,
R.
, and
Quiles
,
E.
,
2008
, “
Diagnosis of Intermittent Fault Dynamics
,”
International Conference on Emerging Technologies and Factory Automation (ETFA)
,
Hamburg, Germany
,
Sept. 15–18
, pp.
559
566
.
9.
Correcher
,
A.
,
García
,
E.
,
Morant
,
F.
,
Quiles
,
E.
, and
Rodríguez
,
L.
,
2012
, “
Intermittent Failure Dynamics Characterization
,”
IEEE Trans. Reliab.
,
61
(
3
), pp.
649
658
.
10.
Chen
,
B.
, and
Willett
,
P.
,
2000
, “
Detection of Hidden Markov Model Transient Signals
,”
IEEE Trans. Aerosp. Electron. Syst.
,
36
(
4
), pp.
1253
1268
.
11.
Gebraeel
,
N. Z.
,
Lawley
,
M. A.
,
Li
,
R.
, and
Ryan
,
J. K.
,
2005
, “
Residual-Life Distributions From Component Degradation Signals: A Bayesian Approach
,”
IiE Trans.
,
37
(
6
), pp.
543
557
.
12.
Gao
,
Z.
,
Ma
,
C.
,
Li
,
Y.
,
Xu
,
G.
, and
Luo
,
Y.
,
2017
, “
An IMA Degradation Model With Intermittent Faults for RUL Prediction
,”
Prognostics and System Health Management Conference (PHM)
,
Harbin, China
,
July 9–12
, pp.
1
6
.
13.
Xiao
,
C.
,
Yu
,
M.
,
Zhang
,
B.
,
Wang
,
H.
, and
Jiang
,
C.
,
2020
, “
Discrete Component Prognosis for Hybrid Systems Under Intermittent Faults
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
4
), pp.
1
12
.
14.
Li
,
Q.
,
Lv
,
K.
,
Qiu
,
J.
, and
Liu
,
G.
,
2018
, “
Research on Residual Life Prediction for Electrical Connectors Based on Intermittent Failure and Hidden Semi-Markov Model
,”
Appl. Sci.
,
8
(
8
), p.
1373
.
15.
Ismaeel
,
A.
, and
Bhatnagar
,
R.
,
1997
, “
Test for Detection and Location of Intermittent Faults in Combinational Circuits
,”
IEEE Trans. Reliab.
,
46
(
2
), pp.
269
274
.
16.
Correcher
,
A.
,
Garcia
,
E.
,
Morant
,
F.
,
Quiles
,
E.
, and
Blasco-Gimenez
,
R.
,
2003
, “
Intermittent Failure Diagnosis in Industrial Processes
,”
IEEE International Symposium on Industrial Electronics (ISIE)
,
Rio de Janeiro, Brazil
,
June 9–11
, Vol. 2, pp.
723
728
.
17.
Contant
,
O.
,
Lafortune
,
S.
, and
Teneketzis
,
D.
,
2004
, “
Diagnosis of Intermittent Faults
,”
Discrete Event Dyn. Syst.
,
14
(
2
), pp.
171
202
.
18.
Biswas
,
S.
,
2012
, “
Diagnosability of Discrete Event Systems for Temporary Failures
,”
Comput. Electr. Eng.
,
38
(
6
), pp.
1534
1549
.
19.
Boussif
,
A.
, and
Ghazel
,
M.
,
2017
, “
A Diagnoser-Based Approach for Intermittent Fault Diagnosis of Discrete-Event Systems
,”
American Control Conference (ACC)
,
Seattle, WA
,
May 24–26
, pp.
3860
3867
.
20.
Yaramasu
,
A.
,
Cao
,
Y.
,
Liu
,
G.
, and
Wu
,
B.
,
2012
, “
Intermittent Wiring Fault Detection and Diagnosis for SSPC Based Aircraft Power Distribution System
,”
IEEE/ASME (AIM) International Conference on Advanced Intelligent Mechatronics
,
Kaohsiung, Taiwan
,
July 11–14
, pp.
1117
1122
.
21.
Yaramasu
,
A.
,
Cao
,
Y.
,
Liu
,
G.
, and
Wu
,
B.
,
2015
, “
Aircraft Electric System Intermittent Arc Fault Detection and Location
,”
IEEE Trans. Aerosp. Electron. Syst.
,
51
(
1
), pp.
40
51
.
22.
Sedighi
,
T.
,
Foote
,
P. D.
, and
Khan
,
S.
,
2015
, “
Intermittent Fault Detection on an Experimental Aircraft Fuel Rig: Reduce the no Fault Found Rate
,”
International Conference on Systems and Control (ICSC)
,
Sousse, Tunisia
,
Apr. 28–30
, IEEE, pp.
110
115
.
23.
Yan
,
R.
,
He
,
X.
, and
Zhou
,
D.
,
2016
, “
A Diagnosis Scheme for Intermittent Faults in Active Suspension Systems of High Speed Trains
,”
World Congress on Intelligent Control and Automation (WCICA)
,
Guilin, China
,
June 12–15
, IEEE, pp.
1297
1302
.
24.
Zhao
,
Y.
,
He
,
X.
,
Pecht
,
M. G.
,
Zhang
,
J.
, and
Zhou
,
D.
,
2020
, “
Detection and Detectability of Intermittent Faults Based on Moving Average T2 Control Charts With Multiple Window Lengths
,”
J. Process Control
,
92
, pp.
296
309
.
25.
Zhao
,
Y.
,
He
,
X.
,
Zhang
,
J.
,
Ji
,
H.
,
Zhou
,
D.
, and
Pecht
,
M. G.
,
2021
, “
Detection of Intermittent Faults Based on an Optimally Weighted Moving Average T2 Control Chart With Stationary Observations
,”
Automatica
,
123
, p.
109298
.
26.
Shen
,
Z.
,
Huang
,
C.
,
Zhang
,
J.
, and
Hou
,
G.
,
2020
, “
Identifying Intermittent Faults to Restrain Bit False Alarm Based on EMD and HMM
,”
Youth Academic Annual Conference of Chinese Association of Automation (YAC)
,
Zhanjiang, China
,
Oct. 16–18
, pp.
50
55
.
27.
Boussif
,
A.
,
Ghazel
,
M.
, and
Basilio
,
J. C.
,
2021
, “
Intermittent Fault Diagnosability of Discrete Event Systems: An Overview of Automaton-Based Approaches
,”
Discrete Event Dyn. Syst.
,
31
(
1
), pp.
59
102
.
28.
Zaytoon
,
J.
, and
Lafortune
,
S.
,
2013
, “
Overview of Fault Diagnosis Methods for Discrete Event Systems
,”
Annu. Rev. Control
,
37
(
2
), pp.
308
320
.
29.
Zhou
,
D.
,
Zhao
,
Y.
,
Wang
,
Z.
,
He
,
X.
, and
Gao
,
M.
,
2019
, “
Review on Diagnosis Techniques for Intermittent Faults in Dynamic Systems
,”
IEEE Trans. Ind. Electron.
,
67
(
3
), pp.
2337
2347
.
30.
Li
,
H.
,
Lyu
,
K.
,
Yong
,
Z.
,
Xiaolong
,
W.
,
Qiu
,
J.
, and
Liu
,
G.
,
2020
, “
Multichannel Parallel Testing of Intermittent Faults and Reliability Assessment for Electronic Equipment
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
10
(
10
), pp.
1636
1646
.
31.
Borutzky
,
W.
,
2011
,
Bond Graph Modelling of Engineering Systems
,
Springer
,
New York
.
32.
Cheng
,
X.
,
Lv
,
K.
,
Liu
,
G.
, and
Qiu
,
J.
,
2022
, “
Intermittent Fault Modeling and Rul Prediction for Degraded Electrical Connectors in Vibration Environments
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
12
(
5
), pp.
769
777
.
33.
Yu
,
M.
,
Xiao
,
C.
,
Wang
,
H.
,
Jiang
,
W.
, and
Zhu
,
R.
,
2021
, “
Adaptive Cuckoo Search-Extreme Learning Machine Based Prognosis for Electric Scooter System Under Intermittent Fault
,”
Actuators
,
10
(
11
).
34.
Sakoe
,
H.
, and
Chiba
,
S.
,
1978
, “
Dynamic Programming Algorithm Optimization for Spoken Word Recognition
,”
IEEE Trans. Acoust. Speech Signal Process.
,
ASSP-26
(
1
), pp.
43
49
.
35.
Rath
,
T.
, and
Manmatha
,
R.
,
2003
, “
Word Image Matching Using Dynamic Time Warping
,”
Conference on Computer Vision and Pattern Recognition (CVPR)
,
Madison, WI
,
June 18–20
.
36.
Martens
,
R.
, and
Claesen
,
L.
,
1996
, “
On-Line Signature Verification by Dynamic Time-Warping
,”
International Conference on Pattern Recognition
,
Vienna, Austria
,
Aug. 15–19
, Vol. 3, pp.
38
42
.
37.
He
,
A.
, and
Jin
,
X.
,
2021
, “
Deep Variational Autoencoder Classifier for Intelligent Fault Diagnosis Adaptive to Unseen Fault Categories
,”
IEEE Trans. Reliab.
,
70
(
4
), pp.
1581
1595
.
38.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “Auto-Encoding Variational Bayes.” doi:10.48550/ARXIV.1312.6114, https://arxiv.org/abs/1312.6114
39.
Liu
,
C.
,
Antypenko
,
R.
,
Sushko
,
I.
, and
Zakharchenko
,
O.
,
2022
, “
Intrusion Detection System After Data Augmentation Schemes Based on the VAE and CVAE
,”
IEEE Trans. Reliab.
,
71
(
2
), pp.
1000
1010
.
40.
Kullback
,
S.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
(
1
), pp.
79
86
.
41.
Bhattacharyya
,
A. K.
,
1943
, “
On a Measure of Divergence Between Two Statistical Populations Defined by Their Probability Distributions
,”
Bull. Calcutta Math. Soc.
,
35
, pp.
99
109
.
42.
Rabiner
,
L. R.
,
1989
, “
A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition
,”
Proc. IEEE
,
77
(
2
), pp.
257
286
.
43.
Jurafsky
,
D.
, and
Martin
,
J. H.
,
2008
,
Speech and Language Processing
, 2nd ed.,
Pearson
,
Upper Saddle River, NJ
.
44.
Giorgino
,
T.
,
2009
, “
Computing and Visualizing Dynamic Time Warping Alignments in T: The DTW Package
,”
J. Stat. Softw.
,
31
(
7
), pp.
1
24
.
You do not currently have access to this content.