Abstract

Vortex core detection remains an unsolved problem in the field of experimental and computational fluid dynamics. Available methods such as the Q, delta, and swirling strength criterion are based on a decomposed velocity gradient tensor but detect spurious vortices (false positives and false negatives), making these methods less robust. To overcome this, we propose a new hybrid machine learning approach in which we use a convolutional neural network to detect vortex regions within surface streamline plots and an additional deep neural network to detect vortex cores within identified vortex regions. Furthermore, we propose an automatic labeling approach based on K-means clustering to preprocess our input images. We show results for two classical test cases in fluid mechanics: the Taylor–Green vortex problem and two rotating blades. We show that our hybrid approach is up to 2.6 times faster than a pure deep neural network-based approach and furthermore show that our automatic K-means clustering labeling approach achieves within 0.45% mean square error of the more labour-intensive, manual labeling approach. At the same time, by using a sufficient number of samples, we show that we are able to reduce false positives and negatives entirely and thus show that our hybrid machine learning approach is a viable alternative to currently used vortex detection tools in fluid mechanics applications.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program
,
Stanford, CA
,
June 27–July 22
, pp.
193
208
.
2.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
,
1990
, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids A
,
2
(
5
), pp.
765
777
.
3.
Liu
,
C. Q.
,
Wang
,
Y. Q.
,
Yang
,
Y.
, and
Duan
,
Z. W.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China: Phys., Mech. Astron.
,
59
(
8
), pp.
1
19
.
4.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.
5.
Abolholl
,
H. A. A.
,
Teschner
,
T. R.
, and
Moulitsas
,
I.
,
2023
, “
Surface Line Integral Convolution-based Vortex Detection Using Computer Vision
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
5
), p.
051002
.
6.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 27–30
, pp.
779
788
.
7.
Abadi, Martín
,
B.
,
Paul
,
C.
,
Jianmin
,
C.
,
Zhifeng
,
D.
,
Andy
,
D.
,
Jeffrey
,
D.
, and
Matthieu
,
G.
,
2016
, “
TensorFlow: A System for Large-Scale Machine Learning
,”
OSDI'16: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation
,
Savannah, GA
,
Nov. 2–4
, pp.
265
283
.
8.
Kohler
,
B.
,
Gasteiger
,
R.
,
Preim
,
U.
,
Theisel
,
H.
,
Gutberlet
,
M.
, and
Preim
,
B.
,
2013
, “
Semi-Automatic Vortex Extraction in 4D PC-MRI Cardiac Blood Flow Data Using Line Predicates
,”
IEEE Trans. Vis. Comput. Graph.
,
19
(
12
), pp.
2773
2782
.
9.
Oeltze-Jafra
,
S.
,
Cebral
,
J. R.
,
Janiga
,
G.
, and
Preim
,
B.
,
2016
, “
Cluster Analysis of Vortical Flow in Simulations of Cerebral Aneurysm Hemodynamics
,”
IEEE Trans. Vis. Comput. Graph.
,
22
(
1
), pp.
757
766
.
10.
Kenwright
,
D.
, and
Haimes
,
R.
,
1997
, “
Vortex Identification–Applications in Aerodynamics: A Case Study
,”
IEEE Conference on Visualization
,
Phoenix, AZ
,
Oct. 24
, pp.
413
415
.
11.
Gutak
,
A. D.
,
2015
, “
Experimental Investigation and Industrial Application of Ranque-Hilsch Vortex Tube
,”
Int. J. Refrig.
,
49
, pp.
93
98
.
12.
Wu
,
X.
, and
Moin
,
P.
,
2009
, “
Direct Numerical Simulation of Turbulence in a Nominally Zero-Pressure-Gradient Flat-Plate Boundary Layer
,”
J. Fluid Mech.
,
630
, pp.
5
41
.
13.
Saffman
,
P. G.
,
1993
,
Vortex Dynamics
(
Cambridge Monographs on Mechanics
),
Cambridge University Press
,
Cambridge, UK
.
14.
Förste
,
J.
,
1984
, “
Lugt, H. J., Vortex Flow in Nature and Technology. New York et al., John Wiley & Sons 1983. XV, 297 S., Zahlr. Abb., £ 47.45. ISBN 0-471-86925-2
,”
ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik
,
64
(
11
), p.
502
.
15.
Jiang
,
M.
,
Machiraju
,
R.
, and
Thompson
,
D.
,
2005
, “Detection and Visualization of Vortices,”
Visualization Handbook
,
C. D.
Hansen
, and
C. R.
Johnson
, eds.,
Elsevier
,
Burlington, MA
, pp.
295
309
.
16.
Robinson
,
S. K.
,
1991
, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
601
639
.
17.
Sadarjoen
,
I. A.
,
Post
,
F. H.
,
Ma
,
B.
,
Banks
,
D. C.
, and
Pagendarm
,
H. G.
,
1998
, “
Selective Visualization of Vortices in Hydrodynamic Flows
,”
IEEE Conference on Visualization
,
Research Triangle Park, NC
,
Oct. 18–23
, pp.
419
422
.
18.
Haller
,
G.
,
Hadjighasem
,
A.
,
Farazmand
,
M.
, and
Huhn
,
F.
,
2016
, “
Defining Coherent Vortices Objectively From the Vorticity
,”
J. Fluid Mech.
,
295
, pp.
136
173
.
19.
Serra
,
M.
, and
Haller
,
G.
,
2016
, “
Objective Eulerian Coherent Structures
,”
Chaos
,
26
(
5
), p.
053110
.
20.
Zhang
,
Y.
,
Liu
,
K.
,
Xian
,
H.
, and
Du
,
X.
,
2018
, “
A Review of Methods for Vortex Identification in Hydroturbines
,”
Renewable. Sustainable. Energy. Rev.
,
81
(
1
), pp.
1269
1285
.
21.
Samtaney
,
R.
,
Silver
,
D.
,
Zabusky
,
N.
, and
Cao
,
J.
,
1994
, “
Visualizing Features and Tracking Their Evolution
,”
Computer
,
27
(
7
), pp.
20
27
.
22.
Carlbom
,
I.
,
Chakravarty
,
I.
, and
Hsu
,
W. M.
,
1992
, “
SIGGRAPH’91 Workshop Report Integrating Computer Graphics, Computer Vision, and Image Processing in Scientific Applications
,”
ACM SIGGRAPH Computer Graphics
,
26
(
1
), pp.
8
17
.
23.
Abdurakipov
,
S.
,
Tokarev
,
M.
,
Butakov
,
E.
, and
Dulin
,
V.
,
2019
, “
Application of Computer Vision and Neural Network Analysis to Study the Structure and Dynamics of Turbulent Jets
,”
J. Phys. Conf. Ser.
,
1421
, p.
012018
.
24.
Franz
,
K.
,
Roscher
,
R.
,
Milioto
,
A.
,
Wenzel
,
S.
, and
Kusche
,
J.
,
2018
, “
Ocean Eddy Identification and Tracking Using Neural Networks
,”
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
,
Valencia, Spain
,
July 22–27
, pp.
6887
6890
.
25.
Lguensat
,
R.
,
Sun
,
M.
,
Fablet
,
R.
,
Mason
,
E.
,
Tandeo
,
P.
, and
Chen
,
G.
,
2018
, “
EddyNet: A Deep Neural Network for Pixel-Wise Classification of Oceanic Eddies
,”
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
,
Valencia, Spain
,
July 22–27
, pp.
1764
1767
.
26.
Deng
,
L.
,
Wang
,
Y.
,
Liu
,
Y.
,
Wang
,
F.
,
Li
,
S.
, and
Liu
,
J.
,
2019
, “
A CNN-Based Vortex Identification Method
,”
J. Vis.
,
22
(
1
), pp.
65
78
.
27.
Fukami
,
K.
,
Fukagata
,
K.
, and
Taira
,
K.
,
2020
, “
Assessment of Supervised Machine Learning Methods for Fluid Flows
,”
Theoretical Comput. Fluid Dyn.
,
34
, pp.
497
519
.
28.
Brenner
,
M. P.
,
Eldredge
,
J. D.
, and
Freund
,
J. B.
,
2019
, “
Perspective on Machine Learning for Advancing Fluid Mechanics
,”
Phys. Rev. Fluids
,
4
(
10
), p.
100501
.
29.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid. Mech.
,
52
, pp.
477
508
.
30.
Lee
,
H.
,
Simone
,
N.
,
Su
,
Y.
,
Zhu
,
Y.
,
Ribeiro
,
B. L. R.
,
Franck
,
J. A.
, and
Breuer
,
K.
,
2022
, “
Leading Edge Vortex Formation and Wake Trajectory: Synthesizing Measurements, Analysis, and Machine Learning
,”
Phys. Rev. Fluids.
,
7
(
7
), p.
074704
.
31.
Ribeiro
,
B. L. R.
, and
Franck
,
J. A.
,
2023
, “
Machine Learning to Classify Vortex Wakes of Energy Harvesting Oscillating Foils
,”
AIAA. J.
,
61
(
3
), pp.
1281
1291
.
32.
Cabral
,
B.
, and
Leedom
,
L.
,
1993
, “
Imaging Vector Fields Using Line Integral Convolution
,”
SIGGRAPH '93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques
,
Anaheim, CA
,
Aug. 2–6
, pp.
263
270
.
33.
Ni
,
Z.
,
Chen
,
J.
,
Sang
,
N.
,
Gao
,
C.
, and
Liu
,
L.
,
2018
, “
Light YOLO for High-Speed Gesture Recognition
,”
IEEE International Conference on Image Processing
,
Athens, Greece
,
Oct. 7–10
, pp.
3099
3103
.
34.
Jiang
,
M.
,
Hai
,
T.
,
Pan
,
Z.
,
Wang
,
H.
,
Jia
,
Y.
, and
Deng
,
C.
,
2019
, “
Multi-Agent Deep Reinforcement Learning for Multi-Object Tracker
,”
IEEE Access
,
7
, pp.
32400
32407
.
35.
Farhadi
,
A.
, and
Redmon
,
J.
,
2018
, “
Yolov3: An Incremental Improvement
,” Conference on Computer Vision and Pattern Recognition, Springer, Berlin/Heidelberg, Germany, pp. 1804–2767https://arxiv.org/abs/1804.02767.
36.
Wang
,
Q.
,
Bi
,
S.
,
Sun
,
M.
,
Wang
,
Y.
,
Wang
,
D.
, and
Yang
,
S.
,
2018
, “
Deep Learning Approach to Peripheral Leukocyte Recognition
,”
PLoS. One.
,
14
(
6
), pp.
1
18
.
37.
Calvet
,
A. G.
,
Dave
,
M.
, and
Franck
,
J. A.
,
2021
, “
Unsupervised Clustering and Performance Prediction of Vortex Wakes From Bio-inspired Propulsors
,”
Bioinspiration Biomimetics
,
16
(
4
), p.
046015
.
38.
Agatonovic-Kustrin
,
S.
, and
Beresford
,
R.
,
2000
, “
Basic Concepts of Artificial Neural Network (ANN) Modeling and Its Application in Pharmaceutical Research
,”
J. Pharm. Biomed. Anal.
,
22
(
5
), pp.
717
727
.
39.
Yilmaz
,
Emre
, and
German
,
Brian J.
,
2017
, “
A Convolutional Neural Network Approach to Training Predictors for Airfoil Performance
,”
18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Denver, CO
,
June 5–9
, pp.
1
19
.
40.
Silva
,
P.
,
2022
, “
Data Supporting the Publication 'Hovering Rotor Solutions by High-Order Methods on Unstructured Grids
.” .
41.
Diosady
,
L.
, and
Murman
,
S.
,
2015
, “
Case 3.3: Taylor Green Vortex Evolution
,”
Case summary for 3rd International Workshop on Higher-Order CFD Methods
,
Kissimmee, FL
,
Jan. 3–4
.
42.
Lesieur
,
M.
, and
Métais
,
O.
,
1996
, “
New Trends in Large-Eddy Simulations of Turbulence
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
45
82
.
43.
Beck
,
A. D.
, and
Gassner
,
G. J.
,
2012
, “
Numerical Simulation of the Taylor-Green Vortex at Re = 1600 With the Discontinuous Galerkin Spectral Element Method for Well-Resolved and Underresolved Scenarios
,”
50th AIAA Aerospace Sciences Meeting
,
Nashville, TN
,
Jan. 9–12
, pp.
1
4
.
44.
DeBonis
,
J. R.
,
2013
, “
Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods
,”
51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
,
Grapevine, TX
,
Jan. 7–10
, pp.
1
20
.
45.
Caradonna
,
F. X.
, and
Tung
,
C.
,
1981
, “
Experimental and Analytical Studies of a Model Helicopter Rotor in Hover
,”
Vertica
,
5
(
2
), pp.
149
161
.
46.
Ricci
,
F.
,
Silva
,
P. A. S. F.
,
Tsoutsanis
,
P.
, and
Antoniadis
,
A. F.
,
2020
, “
Hovering Rotor Solutions by High-Order Methods on Unstructured Grids
,”
Aerospace Sci. Technol.
,
97
, p.
105648
.
You do not currently have access to this content.