Abstract

Physical modeling of the transient temperature during the Selective Laser Sintering (SLS) Additive Manufacturing (AM) process is essential for the characterization of the quality and structural integrity of the final products. The conventional numerical models used to simulate the thermal field of Additively Manufactured structures (AM structures) are time-consuming and could not be directly used to develop a real-time simulation or a process control system. This paper presents a deep learning encoder–decoder Convolutional Neural Network (CNN) model to predict the thermal field of AM structures. For deep learning training purposes, a time-consuming physics-based simulation was used to create a dataset including thousands of two-dimensional (2D) position-time representations of the laser head with different process parameters and their corresponding heatmap of AM structures. The deep learning model developed based on this dataset is capable of sub-second prediction of the heatmap being more than 41,000 times faster than the physics-based model. The resulting sub-second computational time of the developed deep learning model allows real-time process simulation as well as provides a basis for developing a process control system for the AM process in the future.

References

1.
Luo
,
Z.
, and
Zhao
,
Y.
,
2018
, “
A Survey of Finite Element Analysis of Temperature and Thermal Stress Fields in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
318
332
.
2.
Criales
,
L. E.
,
Arısoy
,
Y. M.
,
Lane
,
B.
,
Moylan
,
S.
,
Donmez
,
A.
, and
Özel
,
T.
,
2017
, “
Laser Powder Bed Fusion of Nickel Alloy 625: Experimental Investigations of Effects of Process Parameters on Melt Pool Size and Shape With Spatter Analysis
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
22
36
.
3.
Heigel
,
J. C.
, and
Lane
,
B. M.
,
2017
, “Measurement of the Melt Pool Length During Single Scan Tracks in a Commercial Laser Powder Bed Fusion Process,” https://www.nist.gov/publications/measurement-melt-pool-length-during-single-scan-tracks-commercial-laser-powder-bed, Accessed November 29, 2020.
4.
Kumar
,
N.
,
Kumar
,
H.
, and
Khurmi
,
J. S.
,
2016
, “
Experimental Investigation of Process Parameters for Rapid Prototyping Technique (Selective Laser Sintering) to Enhance the Part Quality of Prototype by Taguchi Method
,”
Procedia Technol.
,
23
, pp.
352
360
.
5.
Levkulich
,
N. C.
,
Semiatin
,
S. L.
,
Gockel
,
J. E.
,
Middendorf
,
J. R.
,
DeWald
,
A. T.
, and
Klingbeil
,
N. W.
,
2019
, “
The Effect of Process Parameters on Residual Stress Evolution and Distortion in the Laser Powder Bed Fusion of Ti-6Al-4V
,”
Addit. Manuf.
,
28
, pp.
475
484
.
6.
Fu
,
G.
,
Zhang
,
D.
,
He
,
A.
,
Mao
,
Z.
, and
Zhang
,
K.
,
2018
, “
Finite Element Analysis of Interaction of Laser Beam With Material in Laser Metal Powder Bed Fusion Process
,”
Materials
,
11
(
5
), p.
765
.
7.
Arısoy
,
Y. M.
,
Criales
,
L. E.
, and
Özel
,
T.
,
2019
, “
Modeling and Simulation of Thermal Field and Solidification in Laser Powder Bed Fusion of Nickel Alloy IN625
,”
Opt. Laser Technol.
,
109
, pp.
278
292
.
8.
Liu
,
P.
,
Cui
,
X.
,
Deng
,
J.
,
Li
,
S.
,
Li
,
Z.
, and
Chen
,
L.
,
2019
, “
Investigation of Thermal Responses During Metallic Additive Manufacturing Using a “Tri-Prism” Finite Element Method
,”
Int. J. Therm. Sci.
,
136
, pp.
217
229
.
9.
Yang
,
Y.
,
Ragnvaldsen
,
O.
,
Bai
,
Y.
,
Yi
,
M.
, and
Xu
,
B.-X.
,
2019
, “
3D Non-isothermal Phase-Field Simulation of Microstructure Evolution During Selective Laser Sintering
,”
Npj Comput. Mater.
,
5
(
1
).
10.
Haeri
,
S.
,
2017
, “
Optimisation of Blade Type Spreaders for Powder Bed Preparation in Additive Manufacturing Using DEM Simulations
,”
Powder Technol.
,
321
, pp.
94
104
.
11.
Michopoulos
,
J. G.
,
Iliopoulos
,
A. P.
,
Steuben
,
J. C.
,
Birnbaum
,
A. J.
, and
Lambrakos
,
S. G.
,
2018
, “
On the Multiphysics Modeling Challenges for Metal Additive Manufacturing Processes
,”
Addit. Manuf.
,
22
, pp.
784
799
.
12.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041304
.
13.
Xin
,
L.
,
Boutaous
,
M.
,
Xin
,
S.
, and
Siginer
,
D. A.
,
2017
, “
Numerical Modeling of the Heating Phase of the Selective Laser Sintering Process
,”
Int. J. Therm. Sci.
,
120
, pp.
50
62
.
14.
Moser
,
D.
,
Pannala
,
S.
, and
Murthy
,
J.
,
2016
, “
Computation of Effective Thermal Conductivity of Powders for Selective Laser Sintering Simulations
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
8
), p.
082002
.
15.
Gobal
,
A.
, and
Ravani
,
B.
,
2017
, “
Physical Modeling for Selective Laser Sintering Process
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021002
.
16.
Gobal
,
A.
, and
Ravani
,
B.
,
2017
, “
An Adaptive Discrete Element Method for Physical Modeling of the Selective Laser Sintering Process
,”
Appl. Mech. Mater.
,
869
, pp.
69
84
.
17.
Wang
,
J.
,
Ma
,
Y.
,
Zhang
,
L.
,
Gao
,
R. X.
, and
Wu
,
D.
,
2018
, “
Deep Learning for Smart Manufacturing: Methods and Applications
,”
J. Manuf. Syst.
,
48
, pp.
144
156
.
18.
Goh
,
G. D.
,
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2021
, “
A Review on Machine Learning in 3D Printing: Applications, Potential, and Challenges
,”
Artif. Intell. Rev.
,
54
(
1
), pp.
63
94
.
19.
Rong-Ji
,
W.
,
Xin-hua
,
L.
,
Qing-ding
,
W.
, and
Lingling
,
W.
,
2009
, “
Optimizing Process Parameters for Selective Laser Sintering Based on Neural Network and Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
42
(
11–12
), pp.
1035
1042
.
20.
Scime
,
L.
,
Siddel
,
D.
,
Baird
,
S.
, and
Paquit
,
V.
,
2020
, “
Layer-Wise Anomaly Detection and Classification for Powder Bed Additive Manufacturing Processes: A Machine-Agnostic Algorithm for Real-Time Pixel-Wise Semantic Segmentation
,”
Addit. Manuf.
,
36
, p.
101453
.
21.
Zhang
,
B.
,
Liu
,
S.
, and
Shin
,
Y. C.
,
2019
, “
In-Process Monitoring of Porosity During Laser Additive Manufacturing Process
,”
Addit. Manuf.
,
28
, pp.
497
505
.
22.
Mozaffar
,
M.
,
Paul
,
A.
,
Al-Bahrani
,
R.
,
Wolff
,
S.
,
Choudhary
,
A.
,
Agrawal
,
A.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2018
, “
Data-Driven Prediction of the High-Dimensional Thermal History in Directed Energy Deposition Processes via Recurrent Neural Networks
,”
Manuf. Lett.
,
18
, pp.
35
39
.
23.
Zhang
,
W.
,
Mehta
,
A.
,
Desai
,
P. S.
, and
Higgs III
,
C. F.
, “
Machine Learning Enabled Powder Spreading Process Map for Metal Additive Manufacturing (AM)
,”
Proceedings of the 017 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 7
, p.
15
.
24.
Ren
,
K.
,
Chew
,
Y.
,
Zhang
,
Y. F.
,
Fuh
,
J. Y. H.
, and
Bi
,
G. J.
,
2020
, “
Thermal Field Prediction for Laser Scanning Paths in Laser Aided Additive Manufacturing by Physics-Based Machine Learning
,”
Comput. Methods Appl. Mech. Eng.
,
362
, p.
112734
.
25.
Zhu
,
Q.
,
Liu
,
Z.
, and
Yan
,
J.
,
2021
, “
Machine Learning for Metal Additive Manufacturing: Predicting Temperature and Melt Pool Fluid Dynamics Using Physics-Informed Neural Networks
,”
Comput. Mech.
,
67
(
2
), pp.
619
635
.
26.
Roy
,
M.
, and
Wodo
,
O.
,
2020
, “
Data-Driven Modeling of Thermal History in Additive Manufacturing
,”
Addit. Manuf.
,
32
, p.
101017
.
27.
LeCun
,
Y.
,
Boser
,
B.
,
Denker
,
J. S.
,
Henderson
,
D.
,
Howard
,
R. E.
,
Hubbard
,
W.
, and
Jackel
,
L. D.
,
1989
, “
Backpropagation Applied to Handwritten Zip Code Recognition
,”
Neural Comput.
,
1
(
4
), pp.
541
551
.
28.
LeCun
,
Y.
,
Haffner
,
P.
,
Bottou
,
L.
, and
Bengio
,
Y.
,
1999
, “Object Recognition With Gradient-Based Learning,”
Shape, Contour and Grouping in Computer Vision
,
D. A.
Forsyth
,
J. L.
Mundy
,
V.
di Gesú
, and
R.
Cipolla
, eds.,
Springer
,
Berlin, Heidelberg
,
319
345
.
29.
Wei
,
Y.
,
Tian
,
Q.
,
Guo
,
J.
,
Huang
,
W.
, and
Cao
,
J.
,
2019
, “
Multi-Vehicle Detection Algorithm Through Combining Harr and HOG Features
,”
Math. Comput. Simul.
,
155
, pp.
130
145
.
30.
Thu
,
W. M.
, and
Tun
,
D. W. T.
,
2018
, “
GLCM and LTP Based Classification of Food Types
,”
International J. Sci. Eng. Appl.
,
7
(
8
), p.
5
.
31.
Yoo
,
J.
,
Eom
,
H.
, and
Choi
,
Y. S.
,
2019
, “
Image-To-Image Translation Using a Cross-domain Auto-Encoder and Decoder
,”
Appl. Sci.
,
9
(
22
), p.
4780
.
32.
Li
,
G.
,
He
,
X.
,
Zhang
,
W.
,
Chang
,
H.
,
Dong
,
L.
, and
Lin
,
L.
,
2018
, “Non-locally Enhanced Encoder-Decoder Network for Single Image De-raining,” arXiv:1808.01491 [cs], http://arxiv.org/abs/1808.01491, Accessed December 31, 2020.
33.
Mastan
,
I. D.
, and
Raman
,
S.
,
2019
, “Multi-Level Encoder-Decoder Architectures for Image Restoration,” arXiv:1905.00322 [cs, eess], http://arxiv.org/abs/1905.00322, Accessed December 31, 2020.
34.
Chi
,
Z.
,
Wu
,
X.
,
Shu
,
X.
, and
Gu
,
J.
,
2018
, “Single Image Reflection Removal Using Deep Encoder-Decoder Network,” arXiv:1802.00094 [cs], http://arxiv.org/abs/1802.00094, Accessed December 31, 2020.
35.
Brownlee
,
J.
,
2019
,
Deep Learning for Computer Vision: Image Classification, Object Detection, and Face Recognition in Python
,
Machine Learning Mastery (EBook)
.
36.
Lee
,
H.
, and
Kwon
,
H.
,
2017
, “
Going Deeper With Contextual CNN for Hyperspectral Image Classification
,”
IEEE Trans. Image Process.
,
26
(
10
), pp.
4843
4855
.
37.
Ide
,
H.
, and
Kurita
,
T.
,
2017
, “
Improvement of Learning for CNN with ReLU Activation by Sparse Regularization
,”
Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN)
,
Anchorage, AK
,
May 14–19
, pp.
2684
2691
.
38.
Das
,
H.
,
Pradhan
,
C.
, and
Dey
,
N.
,
2020
,
Deep Learning for Data Analytics: Foundations, Biomedical Applications, and Challenges
,
Academic Press
,
Cambridge, MA
.
39.
Kim
,
D.
, and
Hwang
,
D.
,
2020
,
Intelligent Imaging and Analysis
,
MDPI
,
Basel Switzerland
.
40.
Somandepalli
,
K.
,
Toutios
,
A.
, and
Narayanan
,
S. S.
,
2017
, “
Semantic Edge Detection for Tracking Vocal Tract Air-Tissue Boundaries in Real-Time Magnetic Resonance Images
,”
INTERSPEECH 2017
,
Stockholm, Sweden
,
Aug. 20–24
, pp.
631
635
.
41.
Corbin
,
D. J.
,
Nassar
,
A. R.
,
Reutzel
,
E. W.
,
Beese
,
A. M.
, and
Michaleris
,
P.
,
2018
, “
Effect of Substrate Thickness and Preheating on the Distortion of Laser Deposited Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061009
.
42.
Wang
,
X.
, and
Chou
,
K.
,
2019
, “
Microstructure Simulations of Inconel 718 During Selective Laser Melting Using a Phase Field Model
,”
Int. J. Adv. Manuf. Technol.
,
100
(
9–12
), pp.
2147
2162
.
43.
Romano
,
J.
,
Ladani
,
L.
, and
Sadowski
,
M.
,
2016
, “
Laser Additive Melting and Solidification of Inconel 718: Finite Element Simulation and Experiment
,”
JOM
,
68
(
3
), pp.
967
977
.
44.
Lesyk
,
D. A.
,
Martinez
,
S.
,
Mordyuk
,
B. N.
,
Dzhemelinskyi
,
V. V.
,
Lamikiz
,
А
, and
Prokopenko
,
G. I.
,
2020
, “
Post-processing of the Inconel 718 Alloy Parts Fabricated by Selective Laser Melting: Effects of Mechanical Surface Treatments on Surface Topography, Porosity, Hardness and Residual Stress
,”
Surf. Coat. Technol.
,
381
, p.
125136
.
45.
Liu
,
S. Y.
,
Li
,
H. Q.
,
Qin
,
C. X.
,
Zong
,
R.
, and
Fang
,
X. Y.
,
2020
, “
The Effect of Energy Density on Texture and Mechanical Anisotropy in Selective Laser Melted Inconel 718
,”
Mater. Des.
,
191
, p.
108642
.
46.
Levasseur
,
D.
, and
Brochu
,
M.
,
2016
, “
Supersolidus Liquid Phase Sintering Modeling of Inconel 718 Superalloy
,”
Metall. Mater. Trans. A
,
47
(
2
), pp.
869
876
.
47.
Clark
,
E. A.
,
Yeske
,
R.
, and
Birnbaum
,
H. K.
,
1980
, “
The Effect of Hydrogen on the Surface Energy of Nickel
,”
Metall. Mater. Trans. A
,
11
(
11
), pp.
1903
1908
.
48.
Ganeriwala
,
R.
, and
Zohdi
,
T. I.
,
2016
, “
A Coupled Discrete Element-Finite Difference Model of Selective Laser Sintering
,”
Granul. Matter
,
18
(
2
).
49.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
117
123
.
50.
Xing
,
J.
,
Sun
,
W.
, and
Rana
,
R. S.
,
2013
, “
3D Modeling and Testing of Transient Temperature in Selective Laser Sintering (SLS) Process
,”
Optik
,
124
(
4
), pp.
301
304
.
You do not currently have access to this content.