Abstract

This paper proposes a multi-level Bayesian calibration approach that fuses information from heterogeneous sources and accounts for uncertainties in modeling and measurements for time-dependent multi-component systems. The developed methodology has two elements: quantifying the uncertainty at component and system levels, by fusing all available information, and corrected model prediction. A multi-level Bayesian calibration approach is developed to estimate component-level and system-level parameters using measurement data that are obtained at different time instances for different system components. Such heterogeneous data are consumed in a sequential manner, and an iterative strategy is developed to calibrate the parameters at the two levels. This calibration strategy is implemented for two scenarios: offline and online. The offline calibration uses data that is collected over all the time-steps, whereas online calibration is performed in real-time as new measurements are obtained at each time-step. Analysis models and observation data for the thermo-mechanical behavior of gas turbine engine rotor blades are used to analyze the effectiveness of the proposed approach.

References

1.
VanDerHorn
,
E.
, and
Mahadevan
,
S.
,
2018
, “
Bayesian Model Updating With Summarized Statistical and Reliability Data
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
12
24
.
2.
Karve
,
P. M.
,
Guo
,
Y.
,
Kapusuzoglu
,
B.
,
Mahadevan
,
S.
, and
Haile
,
M. A.
,
2020
, “
Digital Twin Approach for Damage-Tolerant Mission Planning Under Uncertainty
,”
Eng. Fract. Mech.
,
225
, p.
106766
.
3.
Viana
,
F. A.
, and
Subramaniyan
,
A. K.
,
2021
, “
A Survey of Bayesian Calibration and Physics-Informed Neural Networks in Scientific Modeling
,”
Arch. Comput. Methods Eng.
,
28
(
5
), pp.
3801
3830
.
4.
DeCarlo
,
E. C.
,
Smarslok
,
B. P.
, and
Mahadevan
,
S.
,
2016
, “
Segmented Bayesian Calibration of Multidisciplinary Models
,”
AIAA J.
,
54
(
12
), pp.
3727
3741
.
5.
Nannapaneni
,
S.
, and
Mahadevan
,
S.
,
2016
, “
Manufacturing Process Evaluation Under Uncertainty: A Hierarchical Bayesian Network Approach
,”
IDETC-CIE, Vol. Volume 1B: 36th Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
ASME
, p.
V01BT02A026
.
6.
Rebba
,
R.
, and
Mahadevan
,
S.
,
2006
, “
Model Predictive Capability Assessment Under Uncertainty
,”
AIAA J.
,
44
(
10
), pp.
2376
2384
.
7.
Mahadevan
,
S.
,
Zhang
,
R.
, and
Smith
,
N.
,
2001
, “
Bayesian Networks for System Reliability Reassessment
,”
Struct. Saf.
,
23
(
3
), pp.
231
251
.
8.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
9.
Ling
,
Y.
,
Mullins
,
J.
, and
Mahadevan
,
S.
,
2014
, “
Selection of Model Discrepancy Priors in Bayesian Calibration
,”
J. Comput. Phys.
,
276
, pp.
665
680
.
10.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2015
, “
Integration of Model Verification, Validation, and Calibration for Uncertainty Quantification in Engineering Systems
,”
Reliab. Eng. Syst. Saf.
,
138
, pp.
194
209
.
11.
Li
,
C.
, and
Mahadevan
,
S.
,
2016
, “
Role of Calibration, Validation, and Relevance in Multi-Level Uncertainty Integration
,”
Reliab. Eng. Syst. Saf.
,
148
, pp.
32
43
.
12.
Behmanesh
,
I.
,
Moaveni
,
B.
,
Lombaert
,
G.
, and
Papadimitriou
,
C.
,
2015
, “
Hierarchical Bayesian Model Updating for Structural Identification
,”
Mech. Syst. Signal Process.
,
64
, pp.
360
376
.
13.
Nagel
,
J. B.
, and
Sudret
,
B.
,
2015
, “
Bayesian Multilevel Model Calibration for Inverse Problems Under Uncertainty With Perfect Data
,”
J. Aerosp. Inf. Syst.
,
12
(
1
), pp.
97
113
.
14.
Nagel
,
J. B.
, and
Sudret
,
B.
,
2016
, “
A Unified Framework for Multilevel Uncertainty Quantification in Bayesian Inverse Problems
,”
Probab. Eng. Mech.
,
43
, pp.
68
84
.
15.
Jia
,
X.
,
Sedehi
,
O.
,
Papadimitriou
,
C.
,
Katafygiotis
,
L. S.
, and
Moaveni
,
B.
,
2022
, “
Hierarchical Bayesian Modeling Framework for Model Updating and Robust Predictions in Structural Dynamics Using Modal Features
,”
Mech. Syst. Signal Process.
,
170
, p.
108784
.
16.
Sedehi
,
O.
,
Papadimitriou
,
C.
, and
Katafygiotis
,
L. S.
,
2019
, “
Probabilistic Hierarchical Bayesian Framework for Time-Domain Model Updating and Robust Predictions
,”
Mech. Syst. Signal Process.
,
123
, pp.
648
673
.
17.
Sedehi
,
O.
,
Katafygiotis
,
L. S.
, and
Papadimitriou
,
C.
,
2020
, “
Hierarchical Bayesian Operational Modal Analysis: Theory and Computations
,”
Mech. Syst. Signal Process.
,
140
, p.
106663
.
18.
Song
,
M.
,
Behmanesh
,
I.
,
Moaveni
,
B.
, and
Papadimitriou
,
C.
,
2020
, “
Accounting for Modeling Errors and Inherent Structural Variability Through a Hierarchical Bayesian Model Updating Approach: An Overview
,”
Sensors
,
20
(
14
), p.
3874
.
19.
Mullins
,
J.
, and
Mahadevan
,
S.
,
2016
, “
Bayesian Uncertainty Integration for Model Calibration, Validation, and Prediction
,”
ASME J. Verif. Valid. Uncertain. Quantif.
,
1
(
1
), p.
011006
.
20.
DeCarlo
,
E. C.
,
Smarslok
,
B. P.
, and
Mahadevan
,
S.
,
2018
, “
Quantifying Model Discrepancy in Time-Dependent, Coupled Analyses
,”
AIAA J.
,
56
(
6
), pp.
2403
2411
.
21.
Pearl
,
J.
,
1988
,
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
,
Morgan Kaufmann Publishers Inc.
,
San Francisco, CA
.
22.
Hastings
,
W. K.
,
1970
, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications
,”
Biometrika
,
57
(
1
), pp.
97
109
.
23.
Del Moral
,
P.
,
Doucet
,
A.
, and
Jasra
,
A.
,
2006
, “
Sequential Monte Carlo Samplers
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
68
(
3
), pp.
411
436
.
24.
Fearnhead
,
P.
,
2004
, “
Particle Filters for Mixture Models With an Unknown Number of Components
,”
Stat. Comput.
,
14
(
1
), pp.
11
21
.
25.
Dempster
,
A. P.
,
Laird
,
N. M.
, and
Rubin
,
D. B.
,
1977
, “
Maximum Likelihood From Incomplete Data Via the EM Algorithm
,”
J. R. Stat. Soc.: Ser. B (Methodol.)
,
39
(
1
), pp.
1
22
.
26.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
27.
Rasmussen
,
C. E.
,
2004
,
Gaussian Processes in Machine Learning
,
Springer
,
Berlin
, pp.
63
71
.
28.
Geurts
,
P.
,
Ernst
,
D.
, and
Wehenkel
,
L.
,
2006
, “
Extremely Randomized Trees
,”
Mach. Learn.
,
63
(
1
), pp.
3
42
.
29.
Ke
,
G.
,
Meng
,
Q.
,
Finley
,
T.
,
Wang
,
T.
,
Chen
,
W.
,
Ma
,
W.
,
Ye
,
Q.
, and
Liu
,
T.-Y.
,
2017
, “Lightgbm: A Highly Efficient Gradient Boosting Decision Tree,”
Advances in Neural Information Processing Systems
,
Guyon
,
I.
,
Luxburg
,
U. V.
,
Bengio
,
S.
,
Wallach
,
H.
,
Fergus
,
R.
,
Vishwanathan
,
S.
, and
Garnett
,
R.
, eds, Vol.
30
,
Curran Associates, Inc.
,
Long Beach, CA
, pp.
3149
3157
.
30.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16
,
San Francisco, CA
,
Aug. 13–17
,
Association for Computing Machinery
, pp.
785
794
.
31.
Prokhorenkova
,
L.
,
Gusev
,
G.
,
Vorobev
,
A.
,
Dorogush
,
A. V.
, and
Gulin
,
A.
,
2018
, “Catboost: Unbiased Boosting With Categorical Features,”
Advances in Neural Information Processing Systems
,
Bengio
,
S.
,
Wallach
,
H.
,
Larochelle
,
H.
,
Grauman
,
K.
,
Cesa-Bianchi
,
N.
, and
Garnett
,
R.
, eds., Vol.
31
,
Curran Associates, Inc
., Montreal, Canada.
32.
Franklin
,
J.
,
2005
, “
The Elements of Statistical Learning: Data Mining, Inference and Prediction
,”
Math. Intelligencer
,
27
(
2
), pp.
83
85
.
33.
Halko
,
N.
,
Martinsson
,
P.-G.
, and
Tropp
,
J. A.
,
2011
, “
Finding Structure With Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions
,”
SIAM Rev.
,
53
(
2
), pp.
217
288
.
34.
Kapusuzoglu
,
B.
,
Guo
,
Y.
,
Mahadevan
,
S.
,
Matsumoto
,
S.
,
Yoshitomo
,
M.
,
Taba
,
S.
, and
Watanabe
,
D.
,
2022
, “
Dimension Reduction for Efficient Surrogate Modeling in High-Dimensional Applications
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA
,
Jan. 3–7
, p.
1440
.
35.
Morris
,
M. D.
, and
Mitchell
,
T. J.
,
1995
, “
Exploratory Designs for Computational Experiments
,”
J. Stat. Plann. Inference
,
43
(
3
), pp.
381
402
.
36.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
.
You do not currently have access to this content.