Abstract

The goal of current research is to compare the data clustering techniques and cluster validity indices for geometrical feature extraction using point cloud. Here, the point clouds are generated by slicing of the computer-aided design (CAD) surface, and the data on each slice is used as inputs to the clustering algorithms. The clustering techniques are used to detect the multiple closed contours on the planer datasets. In this paper, the four most popular clustering techniques, i.e., partition-based (K-means), density-based (DBSCAN), single linkage hierarchical clustering, a variant of hierarchical clustering, and graph-based (spectral) clustering technique are compared using four different datasets. The single linkage hierarchical clustering is preferred over the other variants as it detects the arbitrarily shaped clusters efficiently and effectively. The comparison is based on the ability of successful detection of the closed contours on the planer dataset, the time required, and the input needed for the algorithm. From the investigations, it is found that DBSCAN is the most suitable technique for the feature-based toolpaths (FBTs) development. Besides, for the quality assessment of the clustering solutions and to pinpoint the superlative validity indices, techniques like Calinski-Harabasz, Ball-Hall, Davies-Bouldin, Dunn, Det Ratio, Silhouette, Trace WiB, and Log Det Ratio are compared. The solutions of the clustering techniques are used to compare the validity indices. On the basis of comparative analysis, it is concluded that the Ball-Hall, Dunn, Det Ratio, and Log Det Ratio indices are the best validity criterions for the arbitrary shaped closed contours. The overall outcomes of this research will help in building the algorithms for the feature-based toolpath development strategies for the various manufacturing processes using data science and machine learning techniques.

References

1.
Jain
,
A. K.
,
2010
, “
Data Clustering: 50 Years Beyond K-Means
,”
Pattern Recognition Lett.
,
31
(
8
), pp.
651
666
. 10.1016/j.patrec.2009.09.011
2.
Osman
,
M. K.
,
Mashor
,
M. Y.
, and
Jaafar
,
H.
,
2012
, “
Performance Comparison of Clustering and Thresholding Algorithms for Tuberculosis Bacilli Segmentation
,”
IEEE CITS 2012—2012 International Conference on Computer
,
Amman, Jordan
,
May 14–16
, pp.
1
5
.
3.
DeFreitas
,
K.
, and
Bernard
,
M.
,
2015
, “
Comparative Performance Analysis of Clustering Techniques in Educational Data Mining
,”
IADIS Int. J. Comput. Sci. Information Syst.
,
10
(
2
), pp.
65
78
.
4.
Guldemir
,
H.
, and
Sengur
,
A.
,
2006
, “
Comparison of Clustering Algorithms for Analog Modulation Classification
,”
Expert Syst. Appl.
,
30
(
4
), pp.
642
649
. 10.1016/j.eswa.2005.07.014
5.
Mouton
,
J. P.
,
Ferreira
,
M.
, and
Helberg
,
A. S. J.
,
2020
, “
A Comparison of Clustering Algorithms for Automatic Modulation Classification
,”
Expert Syst. Appl.
,
151
(
1
), p.
113317
. 10.1016/j.eswa.2020.113317
6.
Kassomenos
,
P.
,
Vardoulakis
,
S.
,
Borge
,
R.
,
Lumbreras
,
J.
,
Papaloukas
,
C.
, and
Karakitsios
,
S.
,
2010
, “
Comparison of Statistical Clustering Techniques for the Classification of Modelled Atmospheric Trajectories
,”
Theor. Appl. Climatol.
,
102
(
1
), pp.
1
12
. 10.1007/s00704-009-0233-7
7.
Schütz
,
T.
,
Schraven
,
M. H.
,
Fuchs
,
M.
,
Remmen
,
P.
, and
Müller
,
D.
,
2018
, “
Comparison of Clustering Algorithms for the Selection of Typical Demand Days for Energy System Synthesis
,”
Renewable Energy
,
129
(
Part A
), pp.
570
582
. 10.1016/j.renene.2018.06.028
8.
Renjith
,
S.
,
Sreekumar
,
A.
, and
Jathavedan
,
M.
,
2019
, “
Performance Evaluation of Clustering Algorithms for Varying Cardinality and Dimensionality of Data Sets
,”
Materials Today: Proceedings
,
Belagavi, Karnataka, India
,
Sept. 12–14
, Elsevier Ltd., pp.
627
633
.
9.
Jiang
,
H.
,
Daigle
,
H.
,
Tian
,
X.
,
Pyrcz
,
M. J.
,
Griffith
,
C.
, and
Zhang
,
B.
,
2019
, “
A Comparison of Clustering Algorithms Applied to Fluid Characterization Using NMR T 1-T 2 Maps of Shale
,”
Comput. Geosciences
,
126
(
1
), pp.
52
61
. 10.1016/j.cageo.2019.01.021
10.
Siebert
,
S.
,
Ickstadt
,
K.
,
Schäfer
,
M.
,
Radon
,
Y.
, and
Verveer
,
P. J.
,
2018
, “
Comparison of Clustering Approaches with Application to Dual Colour Protein Data
,”
IET Syst. Biol.
,
12
(
1
), pp.
7
17
. 10.1049/iet-syb.2017.0019
11.
Scheunders
,
P.
,
1997
, “
A Comparison of Clustering Algorithms Applied to Color Image Quantization
,”
Pattern Recognition Lett.
,
18
(
11–13
), pp.
1379
1384
. 10.1016/S0167-8655(97)00116-5
12.
Cai
,
N.
,
Anwer
,
N.
,
Scott
,
P. J.
,
Qiao
,
L.
, and
Jiang
,
X.
,
2020
, “
A New Partitioning Process for Geometrical Product Specifications and Verification
,”
Precis. Eng.
,
62
(
1
), pp.
282
295
. 10.1016/j.precisioneng.2019.12.009
13.
Lu
,
B.
,
Chen
,
J.
,
Ou
,
H.
, and
Cao
,
J.
,
2013
, “
Feature-Based Tool Path Generation Approach for Incremental Sheet Forming Process
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1221
1233
. 10.1016/j.jmatprotec.2013.01.023
14.
Lingam
,
R.
,
Prakash
,
O.
,
Belk
,
J. H.
, and
Reddy
,
N. v.
,
2017
, “
Automatic Feature Recognition and Tool Path Strategies for Enhancing Accuracy in Double Sided Incremental Forming
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5–8
), pp.
1639
1655
. 10.1007/s00170-016-8880-1
15.
Lavoué
,
G.
,
Dupont
,
F.
, and
Baskurt
,
A.
,
2005
, “
A New CAD Mesh Segmentation Method, Based on Curvature Tensor Analysis
,”
CAD Comput. Aided Des.
,
37
(
10
), pp.
975
987
. 10.1016/j.cad.2004.09.001
16.
Yamauchi
,
H.
,
Lee
,
S.
,
Lee
,
Y.
,
Ohtake
,
Y.
,
Belyaev
,
A.
, and
Seidel
,
H. P.
,
2005
, “
Feature Sensitive Mesh Segmentation With Mean Shift
,”
Proceedings—International Conference on Shape Modeling and Applications, SMI’05
,
Cambridge, MA
,
June 13–17
, pp.
238
245
.
17.
Zhang
,
X.
,
Li
,
G.
,
Xiong
,
Y.
, and
He
,
F.
,
2008
, “
3D
,”
Advances in Geometric Modeling and Processing
,
Hangzhou, China
,
Apr. 23–25
, pp.
465
474
.
18.
Jain
,
A. K.
, and
Dubes
,
R. C.
,
1988
,
Algorithms for Clustering Data
,
Prentice Hall
,
NJ
.
19.
Tou
,
J. T.
, and
Gonzalez
,
R. C.
,
1974
,
Pattern Recognition Principles
,
Addison-Wesley Pub. Co.
,
Boston, MA
.
20.
Sander
,
J.
,
Ester
,
M.
,
Kriegel
,
H. P.
, and
Xu
,
X.
,
1998
, “
Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications
,”
Data Mining Knowledge Discovery
,
2
(
2
), pp.
169
194
. 10.1023/A:1009745219419
21.
Schubert
,
E.
,
Sander
,
J.
,
Ester
,
M.
,
Kriegel
,
H. P.
, and
Xu
,
X.
,
2017
, “
DBSCAN Revisited, Revisited
,”
ACM Transactions Database Syst.
,
42
(
3
), pp.
1
21
. 10.1145/3068335
22.
Ester
,
M.
,
Kriegel
,
H.-P.
,
Sander
,
J.
, and
Xu
,
X.
,
1996
, “
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases With Noise
,”
Kdd
,
96
(
34
), pp.
226
231
.
23.
Johnson
,
S. C.
,
1967
, “
Hierarchical Clustering Schemes
,”
Psychometrika
,
32
(
3
), pp.
241
254
. 10.1007/BF02289588
24.
Murtagh
,
F.
, and
Contreras
,
P.
,
2012
, “
Algorithms for Hierarchical Clustering: An Overview
,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
,
2
(
1
), pp.
86
97
. 10.1002/widm.53
25.
Yim
,
O.
, and
Ramdeen
,
K. T.
,
2015
, “
Hierarchical Cluster Analysis: Comparison of Three Linkage Measures and Application to Psychological Data
,”
The Quantitative Methods Psychol.
,
11
(
1
), pp.
8
21
. 10.20982/tqmp.11.1.p008
26.
Ng
,
A. Y.
,
Jordan
,
M. I.
, and
Weiss
,
Y.
,
2001
, “
On Spectral Clustering: Analysis and an Algorithm
,”
Proceedings of the Advances in Neural Information Processing Systems 14
,
Cambridge, MA
,
January
, MIT Press, pp.
849
856
.
27.
Shi
,
J.
, and
Malik
,
J.
,
2000
, “
Normalized Cuts and Image Segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
8
), pp.
888
905
. 10.1109/34.868688
28.
von Luxburg
,
U.
,
2007
, “
A Tutorial on Spectral Clustering
,”
Stat. Comput.
,
17
(
4
), pp.
395
416
. 10.1007/s11222-007-9033-z
29.
Saraçli
,
S.
,
Doğan
,
N.
, and
Doğan
,
İ
,
2013
, “
Comparison of Hierarchical Cluster Analysis Methods by Cophenetic Correlation
,”
J. Inequalities Appl.
,
2013
(
1
), p.
203
. 10.1186/1029-242X-2013-203
30.
Jain
,
A. K.
, and
Dubes
,
R. C.
,
1988
, “Clustering Methods and Algorithms,”
Algorithms for Clustering Data
,
Prentice Hall
,
NJ
, pp.
55
142
.
31.
Zahn
,
C. T.
,
1971
, “
Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters
,”
IEEE Transactions Comput.
,
C-20
(
1
), pp.
68
86
. 10.1109/T-C.1971.223083
32.
Caliñski
,
T.
, and
Harabasz
,
J.
,
1974
, “
A Dendrite Method Foe Cluster Analysis
,”
Commun. Stat.
,
3
(
1
), pp.
1
27
.
33.
Ball
,
G.
,
1965
,
Isodata, a Novel Method of Data Analysis and Pattern Classification
,
Stanford Research Institute
,
Menlo Park, CA
.
34.
Davies
,
D. L.
, and
Bouldin
,
D. W.
,
1979
, “
A Cluster Separation Measure
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
PAMI-1
(
2
), pp.
224
227
. 10.1109/TPAMI.1979.4766909
35.
Dunn
,
J. C.
,
1974
, “
Well-Separated Clusters and Optimal Fuzzy Partitions
,”
J. Cybern.
,
4
(
1
), pp.
95
104
. 10.1080/01969727408546059
36.
Scott
,
A. J.
, and
Symons
,
M. J.
,
1971
, “
Clustering Methods Based on Likelihood Ratio Criteria
,”
Biometrics
,
27
(
2
), pp.
387
397
. 10.2307/2529003
37.
Rousseeuw
,
P. J.
,
1987
, “
Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis
,”
J. Comput. Appl. Math.
,
20
(
C
), pp.
53
65
. 10.1016/0377-0427(87)90125-7
38.
Friedman
,
H. P.
, and
Rubin
,
J.
,
1967
, “
On Some Invariant Criteria for Grouping Data
,”
J. Am. Stat. Assoc.
,
62
(
320
), pp.
1159
1178
. 10.1080/01621459.1967.10500923
You do not currently have access to this content.