Skip Nav Destination
Issues
November 2020
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Three-Dimensional Torus Breakdown and Chaos With Two Zero Lyapunov Exponents in Coupled Radio-Physical Generators
J. Comput. Nonlinear Dynam. November 2020, 15(11): 111001.
doi: https://doi.org/10.1115/1.4048025
Topics:
Bifurcation
,
Chaos
,
Generators
,
Oscillations
,
Dynamics (Mechanics)
Long Term Dynamic Simulation of a Stem Cell Nucleus
J. Comput. Nonlinear Dynam. November 2020, 15(11): 111002.
doi: https://doi.org/10.1115/1.4048195
Topics:
Membranes
,
Simulation
,
Stem cells
,
Stiffness
,
Particulate matter
,
Damping
Condition Monitoring of Motor-Gear System Dynamics With Rotor and Gear Faults
J. Comput. Nonlinear Dynam. November 2020, 15(11): 111003.
doi: https://doi.org/10.1115/1.4048196
A New Approach to Compute Natural Frequencies and Mode Shapes of One-Dimensional Continuous Structures With Arbitrary Nonuniformities
J. Comput. Nonlinear Dynam. November 2020, 15(11): 111004.
doi: https://doi.org/10.1115/1.4048360
Topics:
Mode shapes
,
Vibration
,
Boundary-value problems
Stability and Hopf Bifurcation of Nearest-Neighbor Coupled Neural Networks With Delays
J. Comput. Nonlinear Dynam. November 2020, 15(11): 111005.
doi: https://doi.org/10.1115/1.4048366
Topics:
Artificial neural networks
,
Bifurcation
,
Delays
,
Stability
A Study of Noise Impact on the Stability of Electrostatic MEMS
J. Comput. Nonlinear Dynam. November 2020, 15(11): 111006.
doi: https://doi.org/10.1115/1.4048365
Topics:
Microelectromechanical systems
,
Noise (Sound)
,
Stability
,
Excitation
Vibration and Event-Triggered Control for Flexible Nonlinear Three-Dimensional Euler–Bernoulli Beam System
J. Comput. Nonlinear Dynam. November 2020, 15(11): 111007.
doi: https://doi.org/10.1115/1.4048367
Topics:
Deformation
,
Design
,
Signals
,
Stability
,
Vibration
,
Engineering simulation
,
Simulation
,
Dynamic models
,
Partial differential equations
Fast Generation of Stability Charts for Time-Delay Systems Using Continuation of Characteristic Roots
J. Comput. Nonlinear Dynam. November 2020, 15(11): 111008.
doi: https://doi.org/10.1115/1.4048362
Topics:
Stability
,
Time delay systems
,
Delays
,
Delay differential equations
Email alerts
RSS Feeds
Center Manifold Reduction for Caputo-Hadamard Fractional Differential System
J. Comput. Nonlinear Dynam
Numerical Solution of Fractional Order Bagley–Torvik Equation Via Hermite Wavelet Method
J. Comput. Nonlinear Dynam (July 2025)
Effects of High Frequency Horizontal Base Excitation on a Bistable System
J. Comput. Nonlinear Dynam (August 2025)
Surrogate Models for Compliant Joints in Programmable Structures
J. Comput. Nonlinear Dynam (August 2025)