Skip Nav Destination
Issues
January 2006
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Foreword
Foreword
J. Comput. Nonlinear Dynam. January 2006, 1(1): 1–2.
doi: https://doi.org/10.1115/1.2004119
Topics:
Dynamics (Mechanics)
,
Multibody systems
,
Nonlinear dynamics
Research Papers
Computational Dynamics of Multibody Systems: History, Formalisms, and Applications
J. Comput. Nonlinear Dynam. January 2006, 1(1): 3–12.
doi: https://doi.org/10.1115/1.1961875
The Dynamic Response of Tuned Impact Absorbers for Rotating Flexible Structures
J. Comput. Nonlinear Dynam. January 2006, 1(1): 13–24.
doi: https://doi.org/10.1115/1.1991872
Topics:
Dynamic response
,
Flexible structures
,
Resonance
,
Rotation
,
Rotors
,
Vibration
,
Excitation
,
Dynamics (Mechanics)
,
Simulation
,
Steady state
Effect of the Linearization of the Kinematic Equations in Railroad Vehicle System Dynamics
J. Comput. Nonlinear Dynam. January 2006, 1(1): 25–34.
doi: https://doi.org/10.1115/1.1951783
Topics:
Equations of motion
,
Kinematics
,
Railroads
,
Rotation
,
Vehicles
,
Wheels
,
Wheelsets
,
Errors
,
Approximation
,
Rails
Global Dynamics of an Autoparametric System With Multiple Pendulums
J. Comput. Nonlinear Dynam. January 2006, 1(1): 35–46.
doi: https://doi.org/10.1115/1.1994879
Topics:
Pendulums
,
Equilibrium (Physics)
,
Dynamics (Mechanics)
Dynamic Modeling and Experimental Testing of a Piano Action Mechanism
J. Comput. Nonlinear Dynam. January 2006, 1(1): 47–55.
doi: https://doi.org/10.1115/1.1951782
Topics:
Friction
,
Hammers
,
String
,
Jacks (Lifting equipment)
,
Rotation
,
Dynamic models
,
Springs
,
Levers
,
Testing
Response Scenario and Nonsmooth Features in the Nonlinear Dynamics of an Impacting Inverted Pendulum
J. Comput. Nonlinear Dynam. January 2006, 1(1): 56–64.
doi: https://doi.org/10.1115/1.1944734
Topics:
Attractors
,
Bifurcation
,
Pendulums
,
Excitation
,
Nonlinear dynamics
,
Chaos
Control of Impact Microactuators for Precise Positioning
J. Comput. Nonlinear Dynam. January 2006, 1(1): 65–70.
doi: https://doi.org/10.1115/1.1951781
Topics:
Bifurcation
,
Displacement
,
Dynamics (Mechanics)
,
Microactuators
,
Feedback
,
Trajectories (Physics)
,
Chaos
Stability Analysis of Complex Multibody Systems
J. Comput. Nonlinear Dynam. January 2006, 1(1): 71–80.
doi: https://doi.org/10.1115/1.1944733
Topics:
Stability
,
Multibody systems
,
Damping
Verification of Absolute Nodal Coordinate Formulation in Flexible Multibody Dynamics via Physical Experiments of Large Deformation Problems
J. Comput. Nonlinear Dynam. January 2006, 1(1): 81–93.
doi: https://doi.org/10.1115/1.2008998
Topics:
Deformation
,
Finite element analysis
,
Plates (structures)
,
Shapes
,
Simulation
,
Pendulums
,
Damping
Dynamics and Stability of a Two Degree of Freedom Oscillator With an Elastic Stop
J. Comput. Nonlinear Dynam. January 2006, 1(1): 94–102.
doi: https://doi.org/10.1115/1.1961873
Topics:
Degrees of freedom
,
Stability
,
Shock (Mechanics)
,
Excitation
Passive Extraction of Dynamic Transfer Function From Arbitrary Ambient Excitations: Application to High-Speed Rail Inspection From Wheel-Generated Waves
Francesco Lanza di Scalea, Xuan Zhu, Margherita Capriotti, Albert Y. Liang, Stefano Mariani, Simone Sternini
J. Comput. Nonlinear Dynam. January 2006, 1(1): 011005–011005-12.
doi: https://doi.org/10.1115/1.4037517
Topics:
Engineering prototypes
,
Excitation
,
Inspection
,
Rails
,
Transfer functions
,
Wheels
,
Waves
,
Impulse (Physics)
,
Transportation systems
Email alerts
RSS Feeds
An Efficient Analysis of Amplitude and Phase Dynamics in Networked MEMS-Colpitts Oscillators
J. Comput. Nonlinear Dynam (January 2025)
A Comparative Analysis Among Dynamics Modeling Approaches for Space Manipulator Systems
J. Comput. Nonlinear Dynam (January 2025)
A Finite Difference-Based Adams-Type Approach for Numerical Solution of Nonlinear Fractional Differential Equations: A Fractional Lotka–Volterra Model as a Case Study
J. Comput. Nonlinear Dynam (January 2025)
Nonlinear Dynamic Analysis of Riemann–Liouville Fractional-Order Damping Giant Magnetostrictive Actuator
J. Comput. Nonlinear Dynam (January 2025)
A Fast Chebyshev Collocation Method for Stability Analysis of a Robotic Machining System with Time Delay
J. Comput. Nonlinear Dynam