We introduce the definition of full state hybrid projective synchronization (FSHPS) with complex scaling factors for chaotic and hyperchaotic complex systems and design adaptive FSHPS schemes for uncertain chaotic complex systems under bounded disturbances with all possible situations of unknown parameters. The proposed schemes guarantee adaptive FSHPS between two chaotic complex systems with a small error bound and the convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Then we draw on the sufficient condition and necessary condition that the unknown parameters converge to their true values based on the persistency of excitation (PE) and linear independence (LI). At last, we realize adaptive FSHPS between uncertain complex Chen and Lü systems, which verify the feasibility and effectiveness of the presented schemes.

References

1.
Fowler
,
A. C.
, and
Gibbon
,
J. D.
,
1982
, “
The Complex Lorenz Equations
,”
Physica D
,
4
(
2
), pp.
139
163
.10.1016/0167-2789(82)90057-4
2.
Mahmoud
,
G. M.
, and
Bountis
,
T.
,
2004
, “
The Dynamics of Systems of Complex Nonlinear Oscillators: A Review
,”
Int. J. Bifurcation Chaos
,
14
(
11
), pp.
3821
3846
.10.1142/S0218127404011624
3.
Mahmoud
,
G. M.
,
Bountis
,
T.
, and
Mahmoud
,
E. E.
,
2007
, “
Active Control and Global Synchronization for Complex Chen and Lü Systems
,”
Int. J. Bifurcation Chaos
,
17
(
12
), pp.
4295
4308
.10.1142/S0218127407019962
4.
Mahmoud
,
G. M.
, and
Mahmoud
,
E. E.
,
2010
, “
Complete Synchronization of Chaotic Complex Nonlinear Systems With Uncertain Parameters
,”
Nonlinear Dyn.
,
62
(
4
), pp.
875
882
.10.1007/s11071-010-9770-y
5.
Mahmoud
,
G. M.
, and
Mahmoud
,
E. E.
,
2010
, “
Phase and Antiphase Synchronization of Two Identical Hyperchaotic Complex Nonlinear Systems
,”
Nonlinear Dyn.
,
61
(
1–2
), pp.
141
152
.10.1007/s11071-009-9637-2
6.
Liu
,
S.
, and
Liu
,
P.
,
2011
, “
Adaptive Anti-Synchronization of Chaotic Complex Nonlinear Systems With Unknown Parameters
,”
Nonlinear Anal.:-Real World Appl.
,
12
(
6
), pp.
3046
3055
.10.1016/j.nonrwa.2011.05.006
7.
Mahmoud
,
G. M.
, and
Mahmoud
,
E. E.
,
2012
, “
Lag Synchronization of Hyperchaotic Complex Nonlinear Systems
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1613
1622
.10.1007/s11071-011-0091-6
8.
Mahmoud
,
G. M.
, and
Mahmoud
,
E. E.
,
2010
, “
Synchronization and Control of Hyperchaotic Complex Lorenz System
,”
Math. Comput. Simul.
,
80
(
12
), pp.
2286
2296
.10.1016/j.matcom.2010.03.012
9.
Liu
,
P.
, and
Liu
,
S.
,
2012
, “
Robust Adaptive Full State Hybrid Synchronization of Chaotic Complex Systems With Unknown Parameters and External Disturbances
,”
Nonlinear Dyn.
,
70
(
1
), pp.
585
599
.10.1007/s11071-012-0479-y
10.
Hu
,
M.
,
Xu
,
Z.
, and
Zhang
,
R.
,
2008
, “
Full State Hybrid Projective Synchronization in Continuous-Time Chaotic (Hyperchaotic) Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
2
), pp.
456
464
.10.1016/j.cnsns.2006.05.003
11.
Hu
,
M.
,
Xu
,
Z.
, and
Zhang
,
R.
,
2008
, “
Full State Hybrid Projective Synchronization of a General Class of Chaotic Maps
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
4
), pp.
782
789
.10.1016/j.cnsns.2006.07.012
12.
Chee
,
C. Y.
, and
Xu
,
D.
,
2005
, “
Secure Digital Communication Using Controlled Projective Synchronisation of Chaos
,”
Chaos Soliton Fract.
,
23
(
3
), pp.
1063
1070
.10.1016/j.chaos.2004.06.017
13.
Mahmoud
,
G. M.
,
Mahmoud
,
E. E.
, and
Arafa
,
A. A.
,
2013
, “
On Projective Synchronization of Hyperchaotic Complex Nonlinear Systems Based on Passive Theory for Secure Communications
,”
Phys. Scr.
,
87
(
5
), p.
055002
.10.1088/0031-8949/87/05/055002
14.
Khalil
,
M.
,
Sarkar
,
A.
, and
Adhikari
,
S.
,
2009
, “
Nonlinear Filters for Chaotic Oscillatory Systems
,”
Nonlinear Dyn.
,
55
(
1–2
), pp.
113
137
.10.1007/s11071-008-9349-z
15.
Khalil
,
M.
,
Sarkar
,
A.
, and
Adhikari
,
S.
,
2010
, “
Tracking Noisy Limit Cycle Oscillation With Nonlinear Filters
,”
J. Sound Vib.
,
329
(
170
), pp.
150
170
.10.1016/j.jsv.2009.09.009
16.
Fradkov
,
A. L.
, and
Pogromsky
,
A. Y.
,
1996
, “
Speed Gradient Control of Chaotic Continuous-Time Systems
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
43
(
11
), pp.
907
914
.10.1109/81.542281
17.
Chen
,
S.
, and
,
J.
,
2002
, “
Parameters Identification and Synchronization of Chaotic Systems Based Upon Adaptive Control
,”
Phys. Lett. A
,
299
(
4
), pp.
353
358
.10.1016/S0375-9601(02)00522-4
18.
Fotsin
,
H. B.
, and
Daafouz
,
J.
,
2005
, “
Adaptive Synchronization of Uncertain Chaotic Colpitts Oscillators Based on Parameter Identification
,”
Phys. Lett. A
,
339
(
3–5
), pp.
304
315
.10.1016/j.physleta.2005.03.049
19.
Huang
,
L.
,
Wang
,
M.
, and
Feng
,
R.
,
2005
, “
Parameters Identification and Adaptive Synchronization of Chaotic Systems With Unknown Parameters
,”
Phys. Lett. A
,
342
(
4
), pp.
299
304
.10.1016/j.physleta.2004.11.065
20.
Antonio
,
L.
, and
Arturo
,
Z.
,
2007
, “
Adaptive Tracking Control of Chaotic Systems With Applications to Synchronization
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
,
54
(
9
), pp.
2019
2029
.10.1109/TCSI.2007.904682
21.
Park
,
J. H.
,
2008
, “
Adaptive Control for Modified Projective Synchronization of a Four-Dimensional Chaotic System With Uncertain Parameters
,”
J. Comput. Appl. Math.
,
213
(
1
), pp.
288
293
.10.1016/j.cam.2006.12.003
22.
Huang
,
D.
,
2005
, “
Simple Adaptive-Feedback Controller for Identical Chaos Synchronization
,”
Phys. Rev. E
,
71
(
3
), p.
037203
.10.1103/PhysRevE.71.037203
You do not currently have access to this content.