Current challenges in industrial multibody system simulation are often beyond the classical range of application of existing industrial simulation tools. The present paper describes an extension of a recursive order-n multibody system (MBS) formulation to nonlinear models of flexible deformation that are of particular interest in the dynamical simulation of wind turbines. The floating frame of reference representation of flexible bodies is generalized to nonlinear structural models by a straightforward transformation of the equations of motion (EoM). The approach is discussed in detail for the integration of a recently developed discrete Cosserat rod model representing beamlike flexible structures into a general purpose MBS software package. For an efficient static and dynamic simulation, the solvers of the MBS software are adapted to the resulting class of MBS models that are characterized by a large number of degrees of freedom, stiffness, and high frequency components. As a practical example, the run-up of a simplified three-bladed wind turbine is studied where the dynamic deformations of the three blades are calculated by the Cosserat rod model.

References

1.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.10.1023/A:1009773505418
2.
Wallrapp
,
O.
,
1994
, “
Standardization of Flexible Body Modeling in Multibody System Codes, Part I: Definition of Standard Input Data
,”
Mech. Struct. Mach.
,
22
(
3
), pp.
283
304
.10.1080/08905459408905214
3.
Rulka
,
W.
,
1998
, “
Effiziente Simulation der Dynamik Mmechatronischer Systeme für Industrielle Anwendungen
,” Ph.D. thesis, Vienna University of Technology, Department of Mechanical Engineering.
4.
Huber
,
F.
,
2006
, “
Application of SIMPACK for Simulating Valve Trains and Timing Mechanisms at Mercedes-Benz Automotive Engines
,” SIMPACK User Meeting 2006, Available at: http://www.simpack.com/fileadmin/simpack/doc/usermeeting06/um06_dc-huber.pdf
5.
Meyer
,
M.
, and
Matthies
,
H. G.
,
2003
, “
Efficient Model Reduction in Non-Linear Dynamics Using the Karhunen-Loève Expansion and Dual-Weighted-Residual Methods
,”
Comput. Mech.
,
31
(
1–2
), pp.
179
191
.10.1007/s00466-002-0404-1
6.
Dietz
,
S.
,
Wallrapp
,
O.
, and
Wiedemann
,
S.
,
2003
, “
Nodal vs. Modal Representation in Flexible Multibody System Dynamics
,”
Proceedings of Multibody Dynamics 2003, July 1–4 2003, IDMEC/IST
,
Lisbon
, Portugal. Available at: http://www.simpack.com/uploads/media/fb_01_nodal_modal-SD_OW_SW_01.pdf
7.
Géradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
John Wiley and Sons
,
Chichester
.
8.
Lang
,
H.
,
Linn
,
J.
, and
Arnold
,
M.
,
2011
, “
Multibody Dynamics Simulation of Geometrically Exact Cosserat Rods
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
285
312
.10.1007/s11044-010-9223-x
9.
Linn
,
J.
,
Lang
,
H.
, and
Tuganov
,
A.
,
2012
, “
Geometrically Exact Cosserat Rods With Kelvin–Voigt Type Viscous Damping
,”
Proceedings of the IMSD2012, The 2nd Joint International Conference on Multibody System Dynamics
, May 29–June 1,
Stuttgart
,
Germany
,
P.
Eberhard
and
P.
Ziegler
, Eds.
10.
Featherstone
,
R.
,
2007
,
Rigid Body Dynamics Algorithms
,
Springer
,
New York
.
11.
Gruttmann
,
F.
,
Sauer
,
R.
, and
Wagner
,
W.
,
1998
, “
A Geometric Nonlinear Eccentric 3D-Beam Element With Arbitrary Cross-Sections
,”
Comput. Methods Appl. Mech. Eng.
,
160
, pp.
383
400
.10.1016/S0045-7825(97)00305-8
12.
Brandl
,
H.
,
Johanni
,
R.
, and
Otter
,
M.
,
1988
, “
A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix
,”
Theory of Robots
,
P.
Kopacek
,
I.
Troch
, and
K.
Desoyer
, Eds.,.
Pergamon
,
Oxford
, pp.
95
100
.
13.
Otter
,
M.
,
Elmqvist
,
H.
, and
Cellier
,
F. E.
,
1996
, “
Modeling of Multibody Systems With the Object-Oriented Modeling Language DYMOLA
,”
Nonlinear Dyn.
,
9
(
1–2
), pp.
91
112
.10.1007/BF01833295
14.
Schiehlen
,
W.
,
1997
, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
149
188
.10.1023/A:1009745432698
15.
Eich-Soellner
,
E.
, and
Führer
,
C.
,
1998
,
Numerical Methods in Multibody Dynamics
,
Teubner
,
Stuttgart
, Germany.
16.
Arnold
,
M.
,
Burgermeister
,
B.
,
Führer
,
C.
,
Hippmann
,
G.
, and
Rill
,
G.
,
2011
, “
Numerical Methods in Vehicle System Dynamics: State of the Art and Current Developments
,”
Vehicle Syst. Dyn.
,
49
(
7
), pp.
1159
1207
.10.1080/00423114.2011.582953
17.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
,
1996
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
, 2nd ed.,
SIAM
,
Philadelphia, PA
.
18.
Hairer
,
E.
, and
Wanner
,
G.
,
1996
,
Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems
, 2nd ed.,
Springer
,
Berlin
.
19.
Negrut
,
D.
, and
Ortiz
,
J.
,
2006
, “
A Practical Approach for the Linearization of the Constrained Multibody Dynamics Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
230
239
.10.1115/1.2198876
20.
Coleman
,
T. F.
,
Garbow
,
B. S.
, and
Moré
,
J. J.
,
1984
, “
Algorithm 618: FORTRAN Subroutines for Estimating Sparse Jacobian Matrices
,”
ACM Trans. Math Software
,
10
(
3
), pp.
346
347
.10.1145/1271.319415
21.
Arnold
,
M.
,
Fuchs
,
A.
, and
Führer
,
C.
,
2006
, “
Efficient Corrector Iteration for DAE Time Integration in Multibody Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
6958
6973
.10.1016/j.cma.2005.02.034
22.
Tuganov
,
A.
,
2009
, “
Elaborated Ball Screw Simulation in SIMPACK
,”
Proceedings of Multibody Dynamics 2009
,
K.
Arczewski
,
J.
Fraczek
, and
M.
Wojtyra
, Eds.,
ECCOMAS Thematic Conference
,
Warsaw, Poland
.
23.
Davis
,
T. A.
,
2004
, “
Algorithm 832: UMFPACK v4.3—An Unsymmetric-Pattern Multifrontal Method
,”
ACM Trans. Math Software
,
30
(
2
), pp.
196
199
.10.1145/992200.992206
24.
Brown
,
P. N.
,
Hindmarsh
,
A. C.
, and
Petzold
,
L. R.
,
1994
, “
Using Krylov Methods in the Solution of Large-Scale Differential-Algebraic Systems
,”
SIAM J. Sci. Comput.
,
15
(
6
), pp.
1467
1488
.10.1137/0915088
25.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2008
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” TP 500-38060, National Renewable Energy Laboratory.
26.
Gasch
,
R.
, and
Twele
,
J.
,
2011
,
Windkraftanlagen, Grundlagen, Entwurf, Planung und Betrieb
,
Vieweg and Teubner
,
Wiesbaden
.
27.
David
, and
Laino
,
J.
,
2013
, NWTC Design Codes. http://wind.nrel.gov/designcodes/simulators/aerodyn/
28.
Moriarty
,
P. J.
, and
Hansen
,
A. C.
,
2005
,
AeroDyn Theory Manual
,
National Renewable Energy Laboratory, CO
.
29.
Leishman
,
J. G.
,
2000
,
Principles of Helicopter Aerodynamics
,
Cambridge University Press
,
Cambridge, UK
, pp.
78
127
.
30.
Bauchau
,
O. A.
, and
Hong
,
C. H.
,
1988
, “
Nonlinear Composite. Beam Theory
,”
ASME J. Appl. Mech.
,
55
(1), pp.
156
163
.10.1115/1.3173622
31.
Hodges
,
D. H.
,
2006
,
Nonlinear Composite Beam Theory
, The American Institute of Aeronautics and Astronautics Reston,
VA
.
32.
Hodges
,
D. H.
, and
Yu
,
W.
,
2007
, “
A Rigorous, Engineer-Friendly Approach for Modelling Realistic, Composite Rotor Blades
,”
Wind Energy
,
10
, pp.
179
193
.10.1002/we.215
33.
Yu
,
W.
,
Volovoi
,
V. V.
,
Hodges
,
D. H.
, and
Hong
,
X.
,
2002
, “
Validation of the Variational Asymptotic Beam Sectional Analysis (VABS)
,”
AIAA J.
,
40
, pp.
2105
2113
.10.2514/2.1545
You do not currently have access to this content.