This paper studies the morphology and evolutionary growth of the Nautilus pompilius based on the fractional R1-trigonometry. Morphological models based on the fractional trigonometry are shown to be superior to those of the commonly assumed logarithmic spiral. The R1-trigonometric functions further infer fractional differential equations, which, based on power law parametric functions, are used to develop a fractional growth equation modeling evolution from conception to maturity. An important aspect of this work is that it demonstrates a method of determination of the dynamic description of a fractional trigonometrically defined process from its morphological description.

1.
Thompson
,
D.
, 1966,
On Growth and Form
, abridged edition,
J. T.
Bonner
, ed.,
Cambridge University Press
,
London
.
2.
McMahon
,
T. A.
, and
Bonner
,
J. T.
, 1983, “
On Size and Life
,”
Scientific American Books
,
Freeman
,
New York
.
3.
Land
,
F.
, 1963,
The Language of Mathematics
,
Doubleday
,
Garden City, New York
.
4.
Hargittai
,
I.
, and
Hargittai
,
M.
, 1994,
Symmetry: A Unifying Concept
,
Shelter
,
Bolinas, CA
.
5.
1988,
Nautilus. The Biology and Paleobiology of a Living Fossil
,
N. H.
Landman
and
W. B.
Saunders
, eds.,
Plenum
,
New York
.
6.
Landman
,
N. H.
,
Cochran
,
J. K.
,
Chamberlain
,
J. A.
, Jr.
, and
Hirshberg
,
D. J.
, 1989, “
Timing of Septal Formation in Two Species of Nautilus Based on Radiometric and Aquarium Data
,”
Mar. Biol. (Berlin)
0025-3162,
102
, pp.
65
72
.
7.
Cochran
,
J. K.
, and
Landman
,
N. H.
, 1984, “
Radiometric Determination of the Growth Rate of the Nautilus in Nature
,”
Nature (Letters)
,
308
, pp.
725
727
.
8.
Westermann
,
B.
,
Beck-Schildwächter
,
I.
,
Beuerlein
,
K.
,
Kaleta
,
E. F.
, and
Shipp
,
R.
, 2004, “
Shell Growth and Chamber Formation of Aquarium-Reared Nautilus pompilius (Mollusca, Celphoda) by X-Ray Analysis
,”
J. Exp. Zool.
0022-104X,
301A
, pp.
930
937
.
9.
Castrejón Pita
,
A. A.
,
Castrejón Pita
,
J. R.
,
Sarmiento Galán
,
A.
, and
Castrejón García
,
R.
, 2003, “
The Impressive Complexity in the Nautilus Pompilus Shell
,”
Fractals
0218-348X,
11
(
2
), pp.
163
168
.
10.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
, 2004, “
Fractional Trigonometry and the Spiral Functions
,”
Nonlinear Dyn.
0924-090X,
38
(
1–4
), pp.
23
60
, special issue on fractional derivatives and their applications.
11.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
, 2005, “
Fractional Trigonometry and Fractional Systems
,”
Fractional Differentiation and Its Applications
,
A.
Le Mehaute
,
J. A.
Tenreiro Mahado
,
J. C.
Trigeassou
, and
J.
Sabatier
, eds., Vol.
1
, Mathematical Tools, Geometrical and Physical Aspects,
U Books on Demand
,
Norderstedt
, pp.
43
56
.
12.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
, 1998, “
A Solution to the Fundamental Linear Fractional Differential Equation
,”
NASA
, Report No. TP-1998–208693.
13.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Acedemic
,
San Diego
.
14.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
, 1999, “
Generalized Functions for the Fractional Calculus
,”
NASA
, Report No. TP-209424.
15.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
, 2008, “
The Fracstrum: A Fractional Generalization of the Spectrum
,”
JESA (Journal Européen des Systèmes Automatisés)
,
42
, pp.
747
768
.
16.
Lorenzo
,
C. F.
, 2009, “
The Fractional Morphology and Growth Rate of the Nautilus Pompilius: Preliminary Results Based on the R1
-Fractional Trigonometry,”
Proceedings of IDETC/CIE
, San Diego, CA, Aug. 30–Sept. 2, Paper No. DETEC2009-87393, typographical errors in this reference are corrected here.
17.
Lorenzo
,
C. F.
, 2009, “
The Fractional Meta-Trigonometry Based on the R-Function: Part I
,”
Proceedings of IDETC/CIE
, San Diego, CA, Aug. 30–Sept. 2, Paper No. DETEC2009-86731.
18.
Lorenzo
,
C. F.
, 2009, “
The Fractional Meta-Trigonometry Based on the R
-Function: Part II,”
Proceedings of IDETC/CIE
, San Diego, CA, Aug. 30–Sept. 2, Paper No. DETEC2009-86733.
You do not currently have access to this content.