This paper studies the morphology and evolutionary growth of the Nautilus pompilius based on the fractional -trigonometry. Morphological models based on the fractional trigonometry are shown to be superior to those of the commonly assumed logarithmic spiral. The -trigonometric functions further infer fractional differential equations, which, based on power law parametric functions, are used to develop a fractional growth equation modeling evolution from conception to maturity. An important aspect of this work is that it demonstrates a method of determination of the dynamic description of a fractional trigonometrically defined process from its morphological description.
1.
Thompson
, D.
, 1966, On Growth and Form
, abridged edition, J. T.
Bonner
, ed., Cambridge University Press
, London
.2.
McMahon
, T. A.
, and Bonner
, J. T.
, 1983, “On Size and Life
,” Scientific American Books
, Freeman
, New York
.3.
Land
, F.
, 1963, The Language of Mathematics
, Doubleday
, Garden City, New York
.4.
Hargittai
, I.
, and Hargittai
, M.
, 1994, Symmetry: A Unifying Concept
, Shelter
, Bolinas, CA
.5.
1988,
Nautilus. The Biology and Paleobiology of a Living Fossil
, N. H.
Landman
and W. B.
Saunders
, eds., Plenum
, New York
.6.
Landman
, N. H.
, Cochran
, J. K.
, Chamberlain
, J. A.
, Jr., and Hirshberg
, D. J.
, 1989, “Timing of Septal Formation in Two Species of Nautilus Based on Radiometric and Aquarium Data
,” Mar. Biol. (Berlin)
0025-3162, 102
, pp. 65
–72
.7.
Cochran
, J. K.
, and Landman
, N. H.
, 1984, “Radiometric Determination of the Growth Rate of the Nautilus in Nature
,” Nature (Letters)
, 308
, pp. 725
–727
.8.
Westermann
, B.
, Beck-Schildwächter
, I.
, Beuerlein
, K.
, Kaleta
, E. F.
, and Shipp
, R.
, 2004, “Shell Growth and Chamber Formation of Aquarium-Reared Nautilus pompilius (Mollusca, Celphoda) by X-Ray Analysis
,” J. Exp. Zool.
0022-104X, 301A
, pp. 930
–937
.9.
Castrejón Pita
, A. A.
, Castrejón Pita
, J. R.
, Sarmiento Galán
, A.
, and Castrejón García
, R.
, 2003, “The Impressive Complexity in the Nautilus Pompilus Shell
,” Fractals
0218-348X, 11
(2
), pp. 163
–168
.10.
Lorenzo
, C. F.
, and Hartley
, T. T.
, 2004, “Fractional Trigonometry and the Spiral Functions
,” Nonlinear Dyn.
0924-090X, 38
(1–4
), pp. 23
–60
, special issue on fractional derivatives and their applications.11.
Lorenzo
, C. F.
, and Hartley
, T. T.
, 2005, “Fractional Trigonometry and Fractional Systems
,” Fractional Differentiation and Its Applications
, A.
Le Mehaute
, J. A.
Tenreiro Mahado
, J. C.
Trigeassou
, and J.
Sabatier
, eds., Vol. 1
, Mathematical Tools, Geometrical and Physical Aspects, U Books on Demand
, Norderstedt
, pp. 43
–56
.12.
Hartley
, T. T.
, and Lorenzo
, C. F.
, 1998, “A Solution to the Fundamental Linear Fractional Differential Equation
,” NASA
, Report No. TP-1998–208693.13.
Podlubny
, I.
, 1999, Fractional Differential Equations
, Acedemic
, San Diego
.14.
Lorenzo
, C. F.
, and Hartley
, T. T.
, 1999, “Generalized Functions for the Fractional Calculus
,” NASA
, Report No. TP-209424.15.
Lorenzo
, C. F.
, and Hartley
, T. T.
, 2008, “The Fracstrum: A Fractional Generalization of the Spectrum
,” JESA (Journal Européen des Systèmes Automatisés)
, 42
, pp. 747
–768
.16.
Lorenzo
, C. F.
, 2009, “The Fractional Morphology and Growth Rate of the Nautilus Pompilius: Preliminary Results Based on the R1
-Fractional Trigonometry,” Proceedings of IDETC/CIE
, San Diego, CA, Aug. 30–Sept. 2, Paper No. DETEC2009-87393, typographical errors in this reference are corrected here.17.
Lorenzo
, C. F.
, 2009, “The Fractional Meta-Trigonometry Based on the R-Function: Part I
,” Proceedings of IDETC/CIE
, San Diego, CA, Aug. 30–Sept. 2, Paper No. DETEC2009-86731.18.
Lorenzo
, C. F.
, 2009, “The Fractional Meta-Trigonometry Based on the R
-Function: Part II,” Proceedings of IDETC/CIE
, San Diego, CA, Aug. 30–Sept. 2, Paper No. DETEC2009-86733.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.