In this paper, the necessary and sufficient conditions for minima plane path with a movable end-point are developed. Using the calculus of variations the considered conditions are based on the zero first-order nonsimultaneous variation and on the positive second-order variation in the functional of integral type corresponding to mechanical systems. The applied procedure is the coordinate parametric method. The obtained solutions are tested on a brachistochrone with one end-point constrained to lie on a circle. The exact solution is compared with the approximate one obtained with Ritz’s method.
1.
Gelfand
, I. M.
, and Fomin
, S. V.
, 1964, Calculus of Variations
, Prentice-Hall
, Englewood Cliffs, NJ
.2.
Pars
, L. A.
, 1963, An Introduction to the Calculus of Variations
, Pergamon
, Oxford
.3.
Bellman
, R.
, 1957, Dynamic Programming
, Princeton University Press
, Princeton, NY
.4.
van Dooren
, R.
, and Vlassenbroeck
, J.
, 1980, “A New Look at the Brachistochrone Problem
,” Z. Angew. Math. Phys.
0044-2275, 31
, pp. 785
–790
.5.
Shizgal
, B.
, 1981, “A Gaussian Quadrature Procedure for Use in the Solution of the Boltzmann Equation and Related Problems
,” J. Comput. Phys.
0021-9991, 41
, pp. 309
–328
.6.
Elnagar
, G. N.
, Kazemi
, M. A.
, and Razzaghi
, M.
, 1995, “The Pseudospectral Legendre Method for Discretizing Optimal Control Problems
,” IEEE Trans. Autom. Control
0018-9286, 40
, pp. 1793
–1796
.7.
Razzaghi
, M.
, and Elnagar
, G. N.
, 1994, “A Pseudospectral Collocation Method for the Brachistochrone Problem
,” Math. Comput. Simul.
0378-4754, 36
, pp. 241
–246
.8.
Chen
, H.
, and Shizgal
, B. D.
, 2001, “A Spectral Solution of the Sturm–Liuville Equation: Comparison of Classical and Nonclassical Basis Sets
,” J. Comput. Appl. Math.
0377-0427, 136
, pp. 17
–35
.9.
Alipanah
, A.
, Razzaghi
, M.
, and Dehghan
, M.
, 2007, “Nonclassical Pseudospectral Method for the Solution of Brachistochrone Problem
,” Chaos, Solitons Fractals
0960-0779, 34
, pp. 1622
–1628
.10.
Djukic
, Dj.
, 1976, “The Brachistochronic Motion of a Material Point on Surface
,” Riv. Mat. Univ. Parma
0035-6298, 2
, pp. 177
–183
.11.
Yamani
, H. A.
, and Mulhem
, A. A.
, 1988, “A Cylindrical Variation on the Brachistochrone Problem
,” Am. J. Phys.
0002-9505, 56
, pp. 467
–469
.12.
Djukic
, Dj.
, 1979, “On Brachistochronic Motion of a Dynamic System
,” Acta Mech.
0001-5970, 32
, pp. 181
–186
.13.
Zekovic
, D.
, 1990, “The Brachistochrone Motion of a Mechanical System With Non-Holonomic, Non-Linear and Non-Stationary Constraints
,” Appl. Math. Mech.
0253-4827, 54
, pp. 765
–768
.14.
Djukic
, Dj. S.
, and Atanackovic
, T. M.
, 1976, “A Note on the Classical Brachistochrone
,” Z. Angew. Math. Phys.
0044-2275, 27
, pp. 677
–681
.15.
Vratanar
, B.
, and Saje
, M.
, 1988, “On the Analytical Solution of the Brachistochrone Problem in a Non-Conservative Field
,” Int. J. Non-Linear Mech.
0020-7462, 33
, pp. 489
–505
.16.
Hayen
, J.
, 2005, “Brachistochrone With Coulomb Friction
,” Int. J. Non-Linear Mech.
0020-7462, 40
, pp. 1057
–1075
.17.
Wensrich
, C. M.
, 2004, “Evolutionaly Solutions to the Brachistochrone Problem With Coulomb Friction
,” Mech. Res. Commun.
0093-6413, 31
, pp. 151
–159
.18.
Covic
, V.
, and Veskovic
, M.
, 2008, “Brachistochrone on a Surface With Coulomb Friction
,” Int. J. Non-Linear Mech.
0020-7462, 43
, pp. 437
–450
.19.
Johns
, O. D.
, 2005, Analytical Mechanics for Relativity and Quantum Mechanics
, Oxford University Press
, New York
.20.
Vujanovic
, B. D.
, and Jones
, S. E.
, 1989, Variational Methods in Nonconservative Phenomena
, Academic
, Boston, MA
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.