In this paper, the necessary and sufficient conditions for minima plane path with a movable end-point are developed. Using the calculus of variations the considered conditions are based on the zero first-order nonsimultaneous variation and on the positive second-order variation in the functional of integral type corresponding to mechanical systems. The applied procedure is the coordinate parametric method. The obtained solutions are tested on a brachistochrone with one end-point constrained to lie on a circle. The exact solution is compared with the approximate one obtained with Ritz’s method.

1.
Gelfand
,
I. M.
, and
Fomin
,
S. V.
, 1964,
Calculus of Variations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Pars
,
L. A.
, 1963,
An Introduction to the Calculus of Variations
,
Pergamon
,
Oxford
.
3.
Bellman
,
R.
, 1957,
Dynamic Programming
,
Princeton University Press
,
Princeton, NY
.
4.
van Dooren
,
R.
, and
Vlassenbroeck
,
J.
, 1980, “
A New Look at the Brachistochrone Problem
,”
Z. Angew. Math. Phys.
0044-2275,
31
, pp.
785
790
.
5.
Shizgal
,
B.
, 1981, “
A Gaussian Quadrature Procedure for Use in the Solution of the Boltzmann Equation and Related Problems
,”
J. Comput. Phys.
0021-9991,
41
, pp.
309
328
.
6.
Elnagar
,
G. N.
,
Kazemi
,
M. A.
, and
Razzaghi
,
M.
, 1995, “
The Pseudospectral Legendre Method for Discretizing Optimal Control Problems
,”
IEEE Trans. Autom. Control
0018-9286,
40
, pp.
1793
1796
.
7.
Razzaghi
,
M.
, and
Elnagar
,
G. N.
, 1994, “
A Pseudospectral Collocation Method for the Brachistochrone Problem
,”
Math. Comput. Simul.
0378-4754,
36
, pp.
241
246
.
8.
Chen
,
H.
, and
Shizgal
,
B. D.
, 2001, “
A Spectral Solution of the Sturm–Liuville Equation: Comparison of Classical and Nonclassical Basis Sets
,”
J. Comput. Appl. Math.
0377-0427,
136
, pp.
17
35
.
9.
Alipanah
,
A.
,
Razzaghi
,
M.
, and
Dehghan
,
M.
, 2007, “
Nonclassical Pseudospectral Method for the Solution of Brachistochrone Problem
,”
Chaos, Solitons Fractals
0960-0779,
34
, pp.
1622
1628
.
10.
Djukic
,
Dj.
, 1976, “
The Brachistochronic Motion of a Material Point on Surface
,”
Riv. Mat. Univ. Parma
0035-6298,
2
, pp.
177
183
.
11.
Yamani
,
H. A.
, and
Mulhem
,
A. A.
, 1988, “
A Cylindrical Variation on the Brachistochrone Problem
,”
Am. J. Phys.
0002-9505,
56
, pp.
467
469
.
12.
Djukic
,
Dj.
, 1979, “
On Brachistochronic Motion of a Dynamic System
,”
Acta Mech.
0001-5970,
32
, pp.
181
186
.
13.
Zekovic
,
D.
, 1990, “
The Brachistochrone Motion of a Mechanical System With Non-Holonomic, Non-Linear and Non-Stationary Constraints
,”
Appl. Math. Mech.
0253-4827,
54
, pp.
765
768
.
14.
Djukic
,
Dj. S.
, and
Atanackovic
,
T. M.
, 1976, “
A Note on the Classical Brachistochrone
,”
Z. Angew. Math. Phys.
0044-2275,
27
, pp.
677
681
.
15.
Vratanar
,
B.
, and
Saje
,
M.
, 1988, “
On the Analytical Solution of the Brachistochrone Problem in a Non-Conservative Field
,”
Int. J. Non-Linear Mech.
0020-7462,
33
, pp.
489
505
.
16.
Hayen
,
J.
, 2005, “
Brachistochrone With Coulomb Friction
,”
Int. J. Non-Linear Mech.
0020-7462,
40
, pp.
1057
1075
.
17.
Wensrich
,
C. M.
, 2004, “
Evolutionaly Solutions to the Brachistochrone Problem With Coulomb Friction
,”
Mech. Res. Commun.
0093-6413,
31
, pp.
151
159
.
18.
Covic
,
V.
, and
Veskovic
,
M.
, 2008, “
Brachistochrone on a Surface With Coulomb Friction
,”
Int. J. Non-Linear Mech.
0020-7462,
43
, pp.
437
450
.
19.
Johns
,
O. D.
, 2005,
Analytical Mechanics for Relativity and Quantum Mechanics
,
Oxford University Press
,
New York
.
20.
Vujanovic
,
B. D.
, and
Jones
,
S. E.
, 1989,
Variational Methods in Nonconservative Phenomena
,
Academic
,
Boston, MA
.
You do not currently have access to this content.