The lateral vibration of towed wheels—so-called shimmy—is one of the most exciting phenomena of vehicle dynamics. We give a brief description of a simple rig of elastic tire that was constructed for laboratory measurements. A full report is given on the experimental investigation of this rig from the identification of system parameters to the validation of stability boundaries and vibration frequencies of shimmy motion. The experimental results confirm the validity of those tire models that include delay effects. A peculiar quasiperiodic oscillation detected during the experiments is explained by numerical simulations of the nonlinear time-delayed mathematical model.

1.
Pritchard
,
J.
, 2001, “
Overview of Landing Gear Dynamics
,”
J. Aircr.
0021-8669,
38
(
1
), pp.
130
137
.
2.
Broulhiet
,
G.
, 1925, “
The Suspension of the Automobile Steering Mechanism: Shimmy and Tramp
,”
Bull Soc. Ing. Civ. Fr.
,
78
, pp.
540
554
.
3.
de Lavaud
,
D. S.
, 1927, “
Shimmy, Pseudo-Shimmy and Tramp of an Automobile
,”
Acad. Sci., Paris, C. R.
0001-4036,
185
, pp.
254
257
.
4.
Sura
,
N. K.
, and
Suryanarayan
,
S.
, 2007, “
Closed-Form Analytical Solution for the Shimmy Instability of Nose-Wheel Landing Gears
,”
J. Aircr.
0021-8669,
44
(
6
), pp.
1985
1990
.
6.
Thota
,
P.
,
Krauskopf
,
B.
, and
Lowenberg
,
M.
, 2008, “
Shimmy in a Nonlinear Model of an Aircraft Nose Landing Gear With Non-Zero Rake Angle
,”
Proceedings of ENOC-2008
, Russia.
7.
Sharp
,
R. S.
,
Evangelou
,
S.
, and
Limebeer
,
D. J. N.
, 2004, “
Advances in the Modelling of Motorcycle Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
12
(
3
), pp.
251
283
.
8.
Catani
,
G.
, and
Mancinelli
,
N.
, 2007, “
Motorcycle Local Stability Analysis Under Acceleration and Braking by Model Linearization and Eigenproblem Solution
,”
Proceedings of IDECT/CIE-2007
, ASME, Las Vegas, NV.
9.
Troger
,
H.
, and
Zeman
,
K.
, 1984, “
A Nonlinear-Analysis of the Generic Types of Loss of Stability of the Steady-State Motion of a Tractor-Semitrailer
,”
Veh. Syst. Dyn.
0042-3114,
13
(
4
), pp.
161
172
.
10.
Sharp
,
R. S.
, and
Fernańdez
,
M. A. A.
, 2002, “
Car-Caravan Snaking—Part 1: The Influence of Pintle Pin Friction
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
216
(
7
), pp.
707
722
.
11.
Schlippe
,
B.
, and
Dietrich
,
R.
, 1941, “
Das Flattern eines bepneuten Rades (Shimmying of a Pneumatic Wheel)
,”
Bericht 140 der Lilienthal-Gesellschaft für Luftfahrtforschung
, pp.
35
45
,
63
66
. (English translation is available in NACA Technical Memorandum 1365, pp. 125–166, 217–228, 1954).
12.
Sharp
,
R. S.
, and
Jones
,
S. J.
, 1980, “
A Comparison of Tyre Representations in a Simple Wheel Shimmy Problem
,”
Veh. Syst. Dyn.
0042-3114,
9
(
1
), pp.
45
47
.
13.
Limebeer
,
D. J. N.
,
Evangelou
,
S.
, and
Sharp
,
R. S.
, 2001, “
Stability of Motorcycles Under Acceleration and Braking
,”
Proceedings of DETC’01
, ASME, Pittsburgh, PA, pp.
1
3
.
14.
Stepan
,
G.
, 1998, “
Delay, Nonlinear Oscillations and Shimmying Wheels
,”
Proceedings of Symposium CHAOS’97
,
Kluwer
,
Ithaca, NY
, pp.
373
386
.
15.
Esmailzadeh
,
E.
, and
Farzaneh
,
K. A.
, 1999, “
Shimmy Vibration Analysis of Aircraft Landing Gears
,”
J. Vib. Control
1077-5463,
5
, pp.
45
46
.
16.
Stepan
,
G.
, 1991, “
Chaotic Motion of Wheels
,”
Veh. Syst. Dyn.
0042-3114,
20
, pp.
341
351
.
17.
Takacs
,
D.
,
Stepan
,
G.
, and
Hogan
,
S. J.
, 2008, “
Isolated Large Amplitude Periodic Motions of Towed Rigid Wheels
,”
Nonlinear Dyn.
0924-090X,
52
(
1–2
), pp.
27
34
.
18.
Pacejka
,
H. B.
, 2002,
Tyre and Vehicle Dynamics
,
Elsevier
,
Burlington MA
.
19.
Pacejka
,
H. B.
, and
Bakker
,
E.
, 1991, “
The Magic Formula Tyre Model
,”
Veh. Syst. Dyn.
0042-3114,
21
, pp.
1
18
.
20.
Stepan
,
G.
, 1989,
Retarded Dynamical Systems
,
Longman
,
Essex, England
.
21.
Lax
,
P. D.
, and
Wendroff
,
B.
, 1960, “
Systems of Conservation Laws
,”
Commun. Pure Appl. Math.
0010-3640,
13
(
2
), pp.
217
237
.
22.
Takacs
,
D.
, and
Stepan
,
G.
, 2006, “
Dynamic Contact Problem of Rolling Elastic Wheels
,”
Proceedings of ICGF 2006
.
You do not currently have access to this content.