Abstract

The paper explores improving the ride quality of urban air mobility (UAM) aircraft by using a nonlinear model predictive controller (NMPC) for trajectory tracking in the presence of gusts. A hybrid UAM aircraft with traditional control surfaces and multiple rotors is studied. The aircraft's free-flight behavior is governed by a set of nonlinear rigid-body dynamic equations that consider the gyroscopic and inertial effects of the tiltrotors. The control inputs for the aircraft include the spin rate and acceleration of the rotors, their tilt angle and rate, and the deflections of traditional control surfaces, such as the elevator, aileron, and rudder. This research numerically studies the effects of NMPC in actively suppressing aircraft's dynamic responses to continuous stochastic gusts or discrete “1-cosine” gusts, which are applied symmetrically and asymmetrically on the lifting surfaces. The findings indicate that NMPC can effectively maintain the aircraft on its desired flight path, closely resembling the undisturbed level flight when it experiences moderate-intensity gusts. However, the controller's effectiveness decreases as the intensity of the gusts increases. The NMPC can no longer constrain the flight path deviation within a bounded range due to an increased pitch rate when the gust intensity surpasses a certain threshold. In addition, the discrete “1-cosine” gusts present more significant challenges, resulting in pitch angle deviations from the desired value, even at low gust magnitudes.

References

1.
Tuncer
,
U. A.
,
2022
, “
Urban Air Mobility Industry Outlook
,”
IGLUS Q.
,
8
(
1
), pp.
18
26
.
2.
Goyal
,
R.
,
Reiche
,
C.
,
Fernando
,
C.
,
Serrao
,
J.
,
Kimmel
,
S.
,
Cohen
,
A.
, and
Shaheen
,
S.
,
2018
, “
Urban Air Mobility (UAM) Market Study
,”
National Aeronautics and Space Administration, Washington, DC
, Technical Report No.
HQ-E-DAA-TN65181
.https://ntrs.nasa.gov/api/citations/20190002046/downloads/20190002046.pdf
3.
Reiche
,
C.
,
McGillen
,
C.
,
Siegel
,
J.
, and
Brody
,
F.
,
2019
, “
Are We Ready to Weather Urban Air Mobility UAM?
,” Integrated Communications, Navigation and Surveillance Conference (
ICNS
), Herndon, VA, Apr. 9--11, pp.
1
7
.10.1109/ICNSURV.2019.8735297
4.
Holden
,
J.
, and
Goel
,
N.
,
2016
, “
Fast-Forwarding to a Future of On-Demand Urban Air Transportation
,”
Uber Technologies
, San Francisco, CA, accessed Apr. 21, 2025, https://evtol.news/__media/PDFs/UberElevateWhitePaperOct2016.pdf
5.
Zhou
,
Y.
,
Zhao
,
H.
, and
Liu
,
Y.
,
2020
, “
An Evaluative Review of the VTOL Technologies for Unmanned and Manned Aerial Vehicles
,”
Comput. Commun.
,
149
, pp.
356
369
.10.1016/j.comcom.2019.10.016
6.
Straubinger
,
A.
,
Rothfeld
,
R.
,
Shamiyeh
,
M.
,
Büchter
,
K.-D.
,
Kaiser
,
J.
, and
Plötner
,
K. O.
,
2020
, “
An Overview of Current Research and Developments in Urban Air Mobility—Setting the Scene for UAM Introduction
,”
J. Air Transp. Manage.
,
87
, p.
101852
.10.1016/j.jairtraman.2020.101852
7.
Kim
,
H. D.
,
Perry
,
A. T.
, and
Ansell
,
P. J.
,
2018
, “
A Review of Distributed Electric Propulsion Concepts for Air Vehicle Technology
,”
AIAA
Paper No. 2018-4998.10.2514/6.2018-4998
8.
Braman
,
G. D.
,
2018
, “
Aircraft Accidents: Investigating Human Error
,”
Annual Reliability and Maintainability Symposium
(
RAMS
), Reno, NV, Jan. 22–25, pp.
1
6
.10.1109/RAM.2018.8470898
9.
Zhao
,
Y.
,
Guo
,
J.
,
Bai
,
C.
, and
Zheng
,
H.
,
2021
, “
Reinforcement Learning‐Based Collision Avoidance Guidance Algorithm for Fixed‐Wing UAVs
,”
Complexity
,
2021
(
1
), p.
8818013
.10.1155/2021/8818013
10.
Zhang
,
T.
,
Barakos
,
G. N.
,
Filippone
,
A.
, and
Furqan
,
M.
,
2024
, “
High-Fidelity Aero-Acoustic Evaluations of a Heavy-Lift eVTOL in Hover
,”
J. Sound Vib.
,
584
, p.
118453
.10.1016/j.jsv.2024.118453
11.
Farazi
,
N. P.
, and
Zou
,
B.
,
2024
, “
Planning Electric Vertical Takeoff and Landing Aircraft eVTOL-Based Package Delivery With Community Noise Impact Considerations
,”
Transp. Res. Part E: Logist. Transp. Rev.
,
189
, p.
103661
.10.1016/j.tre.2024.103661
12.
Kumar
,
S. N. T.
,
Duba
,
P. K.
,
Mannam
,
N. P. B.
,
Mutnuri
,
V. S.
, and
Rajalakshmi
,
P.
,
2024
, “
Aeroacoustics and Vibration Analysis of Multirotor eVTOL for Sustainable Urban Air Mobility (UAM)
,”
IEEE Sens. Lett.
,
8
(
5
), pp.
1
4
.10.1109/LSENS.2024.3387329
13.
Kim
,
J.
,
Gadsden
,
S. A.
, and
Wilkerson
,
S. A.
,
2020
, “
A Comprehensive Survey of Control Strategies for Autonomous Quadrotors
,”
Can. J. Electr. Comput. Eng.
,
43
(
1
), pp.
3
16
.10.1109/CJECE.2019.2920938
14.
Hoffmann
,
G.
,
Huang
,
H.
,
Waslander
,
S.
, and
Tomlin
,
C.
,
2007
, “
Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment
,”
AIAA
Paper No.
2007
6461
.10.2514/6.2007-6461
15.
Zhang
,
J.
,
Sun
,
L.
,
Qu
,
X.
, and
Wang
,
L.
,
2018
, “
Time-Varying Linear Control for Tiltrotor Aircraft
,”
Chin. J. Aeronaut.
,
31
(
4
), pp.
632
642
.10.1016/j.cja.2018.01.025
16.
Bao
,
X.
,
Kirsch
,
N.
,
Dodson
,
A.
, and
Sharma
,
N.
,
2019
, “
Model Predictive Control of a Feedback-Linearized Hybrid Neuroprosthetic System With a Barrier Penalty
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
10
), p.
101009
.10.1115/1.4042903
17.
Boruah
,
N.
, and
Roy
,
B. K.
,
2020
, “
A Novel Event-Triggered Active Model Predictive Control for Synchronization of Discrete-Time Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
10
), p.
101006
.10.1115/1.4047556
18.
Camacho
,
E. F.
, and
Bordons
,
C.
,
2007
,
Model Predictive Control
(Advanced Textbooks in Control and Signal Processing), 2nd ed.,
Springer
,
London, UK
.
19.
Kouvaritakis
,
B.
, and
Cannon
,
M.
,
2016
,
Model Predictive Control: Classical, Robust and Stochastic
(Advanced Textbooks in Control and Signal Processing),
Springer
,
Cham, Switzerland
.
20.
Qin
,
S. J.
, and
Badgwell
,
T. A.
,
2003
, “
A Survey of Industrial Model Predictive Control Technology
,”
Control Eng. Pract.
,
11
(
7
), pp.
733
764
.10.1016/S0967-0661(02)00186-7
21.
García
,
C. E.
,
Prett
,
D. M.
, and
Morari
,
M.
,
1989
, “
Model Predictive Control: Theory and Practice—A Survey
,”
Automatica
,
25
(
3
), pp.
335
348
.10.1016/0005-1098(89)90002-2
22.
Morari
,
M.
, and
Lee
,
J. H.
,
1999
, “
Model Predictive Control: Past, Present and Future
,”
Comput. Chem. Eng.
,
23
(
4–5
), pp.
667
682
.10.1016/S0098-1354(98)00301-9
23.
Mayne
,
D. Q.
,
Rawlings
,
J. B.
,
Rao
,
C. V.
, and
Scokaert
,
P. O. M.
,
2000
, “
Constrained Model Predictive Control: Stability and Optimality
,”
Automatica
,
36
(
6
), pp.
789
814
.10.1016/S0005-1098(99)00214-9
24.
Allgöwer
,
F.
, and
Zheng
,
A.
, eds.,
2000
,
Nonlinear Model Predictive Control
(Progress in Systems and Control Theory, Vol.
26
),
Birkhäuser Verlag
, Basel, Switzerland.
25.
Kouvaritakis
,
B.
, and
Cannon
,
M.
,
2001
,
Non-Linear Predictive Control: Theory and Practice
,
The Institution of Engineering and Technology
, Stevenage, UK.
26.
Bordons
,
C.
,
Garcia-Torres
,
F.
, and
Ridao
,
M. A.
,
2020
, “
Model Predictive Control Fundamentals
,”
Model Predictive Control of Microgrids (Progress in Systems and Control Theory)
,
Springer
, Cham, Switzerland, pp.
25
44
.
27.
He
,
T.
, and
Su
,
W.
,
2023
, “
Robust Control of Gust-Induced Vibration of Highly Flexible Aircraft
,”
Aerosp. Sci. Technol.
,
143
, p.
108703
.10.1016/j.ast.2023.108703
28.
Meradi
,
D.
,
Benselama
,
Z. A.
, and
Hedjar
,
R.
,
2022
, “
A Predictive Sliding Mode Control for Quadrotor's Tracking Trajectory Subject to Wind Gusts and Uncertainties
,”
Int. J. Electr. Comput. Eng. (IJECE)
,
12
(
5
), pp.
4861
4875
.10.11591/ijece.v12i5.pp4861-4875
29.
Nunes
,
J. S. M.
,
Su
,
W.
, and
He
,
T.
,
2025
, “
Vibration Suppression and Trajectory Tracking With Nonlinear Model Predictive Control for Urban Air Mobility Aircraft
,”
ASME J. Dyn. Syst., Meas., Control
,
147
(
4
), p.
041010
.10.1115/1.4067770
30.
Nunes
,
J. S. M.
,
Su
,
W.
, and
He
,
T.
,
2024
, “
Nonlinear Model Predictive Control for Stabilizing Tiltrotor Urban Air Mobility Aircraft Under Control Effector Failures
,”
Aerosp. Sci. Technol.
, (submitted).
31.
Su
,
W.
,
Qu
,
S.
,
Zhu
,
G.
,
Swei
,
S. S.-M.
,
Hashimoto
,
M.
, and
Zeng
,
T.
,
2022
, “
Modeling and Control of a Class of Urban Air Mobility Tiltrotor Aircraft
,”
Aerosp. Sci. Technol.
,
124
, p.
107561
.10.1016/j.ast.2022.107561
32.
Takács
,
G.
, and
Rohal'-Ilkiv
,
B.
,
2012
,
Model Predictive Vibration Control: Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures
,
Springer, London, UK
.
33.
Giesseler
,
H. G.
,
Kopf
,
M.
,
Varutti
,
P.
,
Faulwasser
,
T.
, and
Findeisen
,
R.
,
2012
, “
Model Predictive Control for Gust Load Alleviation
,”
IFAC Proc. Vol.
,
45
(
17
), pp.
27
32
.10.3182/20120823-5-NL-3013.00049
34.
Liu
,
Y.
,
Druyor
,
C. T.
, and
Wang
,
L.
,
2023
, “
High-Fidelity Analysis of Lift+Cruise VTOL Urban Air Mobility Concept Aircraft
,”
AIAA
Paper No.
2023
3671
.10.2514/6.2023-3671
35.
Johnson
,
W.
, and
Silva
,
C.
,
2022
, “
NASA Concept Vehicles and the Engineering of Advanced Air Mobility Aircraft
,”
Aeronaut. J.
,
126
(
1295
), pp.
59
91
.10.1017/aer.2021.92
36.
U.S. Department of Defense
,
1980
, “
Flying Qualities of Piloted Airplanes
,”
US Military Specification, Washington DC, Report No.
MIL-F-8785C
.https://engineering.purdue.edu/~andrisan/Courses/AAE490F_S2008/Buffer/mst1797.pdf
37.
Grauer
,
J. A.
,
Morelli
,
E. A.
, and
Murri
,
D. G.
,
2017
, “
Flight-Test Techniques for Quantifying Pitch Rate and Angle-of-Attack Rate Dependencies
,”
J. Aircr.
,
54
(
6
), pp.
2367
2377
.10.2514/1.C034407
You do not currently have access to this content.