Abstract

Hill's equation is a common model of a time-periodic system that can undergo parametric resonance for certain choices of system parameters. For most kinds of parametric forcing, stable regions in its two-dimensional parameter space need to be identified numerically, typically by applying a matrix trace criterion. By integrating ordinary differential equations derived from the stability criterion, we present an alternative, more accurate, and computationally efficient numerical method for determining the stability boundaries of Hill's equation in parameter space. This method works similarly to determine stability boundaries for the closely related problem of vibrational stabilization of the linearized Katpiza pendulum. Additionally, we derive a stability criterion for the damped Hill's equation in terms of a matrix trace criterion on an equivalent undamped system. In doing so, we generalize the method of this paper to compute stability boundaries for parametric resonance in the presence of damping.

References

1.
Benjamin
,
T. B.
, and
Ursell
,
F. J.
,
1954
, “
The Stability of the Plane Free Surface of a Liquid in Vertical Periodic Motion
,”
Proc. R. Soc. London, Ser. A. Math. Phys. Sci.
,
225
, pp.
505
515
.10.1098/rspa.1954.0218
2.
Kelly
,
R. E.
,
1965
, “
The Stability of an Unsteady Kelvin–Helmholtz Flow
,”
J. Fluid Mech.
,
22
(
3
), pp.
547
560
.10.1017/S0022112065000964
3.
Iwatsubo
,
T.
,
Sugiyama
,
Y.
, and
Ogino
,
S.
,
1974
, “
Simple and Combination Resonances of Columns Under Periodic Axial Loads
,”
J. Sound Vib.
,
33
(
2
), pp.
211
221
.10.1016/S0022-460X(74)80107-0
4.
Caruntu
,
D. I.
, and
Martinez
,
I.
,
2014
, “
Reduced Order Model of Parametric Resonance of Electrostatically Actuated MEMS Cantilever Resonators
,”
Int. J. Non-Linear Mech.
,
66
, pp.
28
32
.10.1016/j.ijnonlinmec.2014.02.007
5.
Magnus
,
W.
, and
Winkler
,
S.
,
2004
,
Hill's Equation
,
Courier Corporation
, Mineola, New York.
6.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley-VCH
, Weinheim, Baden-Württemberg, Germany.
7.
Berg
,
J. M.
, and
Wickramasinghe
,
I. M.
,
2015
, “
Vibrational Control Without Averaging
,”
Automatica
,
58
, pp.
72
81
.10.1016/j.automatica.2015.04.028
8.
Lee
,
W.-W.
,
Min
,
S.-K.
,
Oh
,
C.-H.
,
Kim
,
P.-S.
,
Song
,
S.-H.
,
Yang
,
M.
, and
Song
,
K.
,
2003
, “
Stability of Ion Motion in the Quadrupole Ion Trap Driven by Rectangular Waveform Voltages
,”
Int. J. Mass Spectrom.
,
230
(
1
), pp.
65
70
.10.1016/j.ijms.2003.08.008
9.
Chikmagalur
,
K.
, and
Bamieh
,
B.
,
2024
, “
Parametric Resonance Networked Oscillators
,” e-print
arXiv:2406.11117
.10.48550/arXiv.2406.11117
10.
Chikmagalur
,
K.
, and
Bamieh
,
B.
,
2024
, “
Vibrational Stabilization of Multi-Link Mechanical Systems
,”
Automatica
,
165
, p.
111589
.10.1016/j.automatica.2024.111589
11.
Maggia
,
M.
,
Eisa
,
S. A.
, and
Taha
,
H. E.
,
2020
, “
On Higher-Order Averaging of Time-Periodic Systems: Reconciliation of Two Averaging Techniques
,”
Nonlinear Dyn.
,
99
(
1
), pp.
813
836
.10.1007/s11071-019-05085-4
12.
Maple
,
C.
,
2003
, “
Geometric Design and Space Planning Using the Marching Squares and Marching Cube Algorithms
,”
International Conference on Geometric Modeling and Graphics
, London, UK, July 16--18, pp.
90
95
.10.1109/GMAG.2003.1219671
13.
Arnold
,
V.
,
1992
,
Ordinary Differential Equations
,
Springer Science & Business Media
, Berlin, Heidelberg.
14.
Wereley
,
N. M.
,
1990
, “
Analysis and Control of Linear Periodically Time Varying Systems
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.http://hdl.handle.net/1721.1/13761
15.
Süli
,
E.
, and
Mayers
,
D. F.
,
2003
,
An Introduction to Numerical Analysis
,
Cambridge University Press
,
Cambridge, UK/New York
.
16.
Owren
,
B.
, and
Zennaro
,
M.
,
1992
, “
Derivation of Efficient, Continuous, Explicit Runge–Kutta Methods
,”
SIAM J. Sci. Stat. Comput.
,
13
(
6
), pp.
1488
1501
.0913084/0913084
You do not currently have access to this content.