Abstract

Flapping-wing micro-air vehicles (FWMAVs) are an emerging technology inspired by flying insects that show promise in applications favoring maneuverability and vehicle compactness. However, current designs are limited by inefficient energetics, and current dynamical models of the flight system employ limiting assumptions when considering power demands. Here, we derive a system-level model of the insect flight system including the thorax, wing, and wing hinge that can inform insect-inspired FWMAV design. We applied the model to study the flight system of a hawkmoth, and used a genetic algorithm optimization to tune uncertain model parameters to minimize the power required to hover. Results show that performance is improved by utilizing multimodal excitation to produce favorable flapping kinematics. This is achieved by locating the flapping frequency of the moth between the nonlinear resonant frequencies, resulting in magnified flapping response and aerodynamically advantageous phase. The optimal flapping frequency can be predicted from the system’s underlying linear natural frequencies and is roughly 54% of the system’s mean natural frequency. Furthermore, effective solutions are configured so that the timing of the applied load and thorax responses are matched such that little effort is spent reversing the wing stroke. The optimized model parameters and corresponding kinematics show moderate agreement with those reported for the hawkmoth. To maintain hovering flight, the successful moths in the population expend approximately 58.5 W/kg. The system-level model and the governing principles identified here can inform the design of energy efficient FWMAVs moving forward.

References

1.
Abdullah
,
S.
,
Appari
,
P.
,
Patri
,
S. R.
, and
Katkoori
,
S.
,
2021
, “
Smart Agriculture Using Flapping-Wing Micro Aerial Vehicles (FWMAVs)
,”
IFIP International Internet of Things Conference
, Virtual Event, Nov. 4–5, pp.
32
47
.10.1007/978-3-030-96466-5_3
2.
Chen
,
Y.
, and
Li
,
Y.
,
2019
, “
Intelligent Autonomous Pollination for Future Farming-a Micro Air Vehicle Conceptual Framework With Artificial Intelligence and Human-in-the-Loop
,”
IEEE Access
,
7
, pp.
119706
119717
.10.1109/ACCESS.2019.2937171
3.
Xiao
,
S.
,
Hu
,
K.
,
Huang
,
B.
,
Deng
,
H.
, and
Ding
,
X.
,
2021
, “
A Review of Research on the Mechanical Design of Hoverable Flapping Wing Micro-Air Vehicles
,”
J. Bionic Eng.
,
18
(
6
), pp.
1235
1254
.10.1007/s42235-021-00118-4
4.
Ellington
,
C. P.
,
Van Den Berg
,
C.
,
Willmott
,
A. P.
, and
Thomas
,
A. L.
,
1996
, “
Leading-Edge Vortices in Insect Flight
,”
Nature
,
384
(
6610
), pp.
626
630
.10.1038/384626a0
5.
Dickinson
,
M. H.
,
Lehmann
,
F.-O.
, and
Sane
,
S. P.
,
1999
, “
Wing Rotation and the Aerodynamic Basis of Insect Flight
,”
Science
,
284
(
5422
), pp.
1954
1960
.10.1126/science.284.5422.1954
6.
Warrick
,
D. R.
,
Tobalske
,
B. W.
, and
Powers
,
D. R.
,
2005
, “
Aerodynamics of the Hovering Hummingbird
,”
Nature
,
435
(
7045
), pp.
1094
1097
.10.1038/nature03647
7.
Traub
,
L. W.
, and
Coffman
,
C.
,
2019
, “
Efficient Low-Reynolds-Number Airfoils
,”
J. Aircr.
,
56
(
5
), pp.
1987
2003
.10.2514/1.C035515
8.
Winslow
,
J.
,
Otsuka
,
H.
,
Govindarajan
,
B.
, and
Chopra
,
I.
,
2018
, “
Basic Understanding of Airfoil Characteristics at Low Reynolds Numbers (10 4–10 5)
,”
J. Aircraft
,
55
(
3
), pp.
1050
1061
.10.2514/1.C034415
9.
Peters
,
H. J.
,
Goosen
,
J. F.
, and
van Keulen
,
F.
,
2015
, “
Optimal FWMAV Wing Design for a Combination of Energy-Effective Hovering and Roll Control
,”
Int. J. Micro Air Veh.
,
7
(
1
), pp.
41
53
.10.1260/1756-8293.7.1.41
10.
Dickinson
,
M. H.
, and
Tu
,
M. S.
,
1997
, “
The Function of Dipteran Flight Muscle
,”
Comp. Biochem. Physiol. Part A Physiol.
,
116
(
3
), pp.
223
238
.10.1016/S0300-9629(96)00162-4
11.
Fernandes
,
J.
,
Bate
,
M.
, and
Vijayraghavan
,
K.
,
1991
, “
Development of the Indirect Flight Muscles of Drosophila
,”
Development
,
113
(
1
), pp.
67
77
.10.1242/dev.113.1.67
12.
Kobayashi
,
M.
, and
Ishikawa
,
H.
,
1993
, “
Breakdown of Indirect Flight Muscles of Alate Aphids (Acyrthosiphon Pisum) in Relation to Their Flight, Feeding and Reproductive Behavior
,”
J. Insect Physiol.
,
39
(
7
), pp.
549
554
.10.1016/0022-1910(93)90036-Q
13.
Jankauski
,
M.
,
Casey
,
C.
,
Heveran
,
C.
,
Busby
,
M. K.
, and
Buchmann
,
S.
,
2022a
, “
Carpenter Bee Thorax Vibration and Force Generation Inform Pollen Release Mechanisms During Floral Buzzing
,”
Sci. Rep.
,
12
(
1
), p.
12654
.10.1038/s41598-022-16859-z
14.
Jankauski
,
M.
,
Ferguson
,
R.
,
Russell
,
A.
, and
Buchmann
,
S.
,
2022b
, “
Structural Dynamics of Real and Modelled Solanum Stamens: Implications for Pollen Ejection by Buzzing Bees
,”
J. R. Soc. Interface
,
19
(
188
), p.
20220040
.10.1098/rsif.2022.0040
15.
Casey
,
C.
,
Heveran
,
C.
, and
Jankauski
,
M.
,
2023
, “
Experimental Studies Suggest Differences in the Distribution of Thorax Elasticity Between Insects With Synchronous and Asynchronous Musculature
,”
J. R. Soc. Interface
,
20
(
201
), p.
20230029
.10.1098/rsif.2023.0029
16.
Pringle
,
J.
,
1949
, “
The Excitation and Contraction of the Flight Muscles of Insects
,”
J. Physiol.
,
108
(
2
), pp.
226
232
.10.1113/jphysiol.1949.sp004326
17.
Hollenbeck
,
A.
, and
Palazotto
,
A.
,
2013
, “
Mechanical Characterization of Flight Mechanism in the Hawkmoth Manduca Sexta
,”
Exp. Mech.
,
53
(
7
), pp.
1189
1199
.10.1007/s11340-013-9726-5
18.
Gau
,
J.
,
Gravish
,
N.
, and
Sponberg
,
S.
,
2019
, “
Indirect Actuation Reduces Flight Power Requirements in Manduca Sexta Via Elastic Energy Exchange
,”
J. R. Soc. Interface
,
16
(
161
), p.
20190543
.10.1098/rsif.2019.0543
19.
Jankauski
,
M. A.
,
2020
, “
Measuring the Frequency Response of the Honeybee Thorax
,”
Bioinspiration Biomimetics
,
15
(
4
), p.
046002
.10.1088/1748-3190/ab835b
20.
Shyy
,
W.
, and
Liu
,
H.
,
2007
, “
Flapping Wings and Aerodynamic Lift: The Role of Leading-Edge Vortices
,”
AIAA J.
,
45
(
12
), pp.
2817
2819
.10.2514/1.33205
21.
Terze
,
Z.
,
Pandža
,
V.
,
Andrić
,
M.
, and
Zlatar
,
D.
,
2022
, “
Reduced Coupled Flapping Wing-Fluid Computational Model With Unsteady Vortex Wake
,”
Nonlinear Dyn.
,
109
(
2
), pp.
975
987
.10.1007/s11071-022-07482-8
22.
Fitzgerald
,
T.
,
Valdez
,
M.
,
Vanella
,
M.
,
Balaras
,
E.
, and
Balachandran
,
B.
,
2011
, “
Flexible Flapping Systems: Computational Investigations Into Fluid-Structure Interactions
,”
Aeronaut. J.
,
115
(
1172
), pp.
593
604
.10.1017/S000192400000628X
23.
Johns
,
W.
,
Davis
,
L.
, and
Jankauski
,
M.
,
2021
, “
Reconstructing Full-Field Flapping Wing Dynamics From Sparse Measurements
,”
Bioinspiration Biomimetics
,
16
(
1
), p.
016005
.10.1088/1748-3190/abb0cb
24.
Schwab
,
R. K.
,
Reid
,
H. E.
, and
Jankauski
,
M.
,
2020
, “
Reduced-Order Modeling and Experimental Studies of Bilaterally Coupled Fluid–Structure Interaction in Single-Degree-of-Freedom Flapping Wings
,” ASME
J. Vib. Acoust.
,
142
(
2
), p.
021012
.10.1115/1.4045920
25.
Jankauski
,
M.
, and
Shen
,
I.
,
2014
, “
Dynamic Modeling of an Insect Wing Subject to Three-Dimensional Rotation
,”
Int. J. Micro Air Veh.
,
6
(
4
), pp.
231
251
.10.1260/1756-8293.6.4.231
26.
Roccia
,
B. A.
,
Preidikman
,
S.
,
Massa
,
J. C.
, and
Mook
,
D. T.
,
2013
, “
Modified Unsteady Vortex-Lattice Method to Study Flapping Wings in Hover Flight
,”
AIAA J.
,
51
(
11
), pp.
2628
2642
.10.2514/1.J052262
27.
Roccia
,
B. A.
,
Preidikman
,
S.
, and
Balachandran
,
B.
,
2017
, “
Computational Dynamics of Flapping Wings in Hover Flight: A co-Simulation Strategy
,”
AIAA J.
,
55
(
6
), pp.
1806
1822
.10.2514/1.J055137
28.
Eldredge
,
J. D.
, and
Jones
,
A. R.
,
2019
, “
Leading-Edge Vortices: Mechanics and Modeling
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
75
104
.10.1146/annurev-fluid-010518-040334
29.
Schwab
,
R.
,
Johnson
,
E.
, and
Jankauski
,
M.
,
2019
, “
A Novel Fluid–Structure Interaction Framework for Flapping, Flexible Wings
,” ASME
J. Vib. Acoust.
,
141
(
6
), p.
061002
.10.1115/1.4044268
30.
Ellington
,
C. P.
,
1984
, “
The Aerodynamics of Hovering Insect Flight. iv. aerodynamic Mechanisms
,”
Philos. Trans. R. Soc. London. B, Biol. Sci.
,
305
, pp.
79
113
.10.1098/rstb.1984.0052
31.
Lehmann
,
F.-O.
,
2004
, “
The Mechanisms of Lift Enhancement in Insect Flight
,”
Naturwissenschaften
,
91
(
3
), pp.
101
122
.10.1007/s00114-004-0502-3
32.
Miller
,
L. A.
, and
Peskin
,
C. S.
,
2009
, “
Flexible Clap and Fling in Tiny Insect Flight
,”
J. Exp. Biol.
,
212
(
19
), pp.
3076
3090
.10.1242/jeb.028662
33.
Srygley
,
R.
, and
Thomas
,
A.
,
2002
, “
Unconventional Lift-Generating Mechanisms in Free-Flying Butterflies
,”
Nature
,
420
(
6916
), pp.
660
664
.10.1038/nature01223
34.
Willmott
,
A. P.
,
Ellington
,
C. P.
, and
Thomas
,
A. L.
,
1997
, “
Flow Visualization and Unsteady Aerodynamics in the Flight of the Hawkmoth, Manduca Sexta
,”
Philos. Trans. R. Soc. London. Ser. B Biol. Sci.
,
352
(
1351
), pp.
303
316
.10.1098/rstb.1997.0022
35.
Lynch
,
J.
,
Gau
,
J.
,
Sponberg
,
S.
, and
Gravish
,
N.
,
2021
, “
Dimensional Analysis of Spring-Wing Systems Reveals Performance Metrics for Resonant Flapping-Wing Flight
,”
J. R. Soc. Interface
,
18
(
175
), p.
20200888
.10.1098/rsif.2020.0888
36.
Pons
,
A.
, and
Beatus
,
T.
,
2022
, “
Distinct Forms of Resonant Optimality Within Insect Indirect Flight Motors
,”
J. R. Soc. Interface
,
19
(
190
), p.
20220080
.10.1098/rsif.2022.0080
37.
Cote
,
B.
,
Weston
,
S.
, and
Jankauski
,
M.
,
2022
, “
Modeling and Analysis of a Simple Flexible Wing—Thorax System in Flapping-Wing Insects
,”
Biomimetics
,
7
(
4
), p.
207
.10.3390/biomimetics7040207
38.
Willmott
,
A. P.
, and
Ellington
,
C. P.
,
1997a
, “
The Mechanics of Flight in the Hawkmoth Manduca Sexta II. Aerodynamic Consequences of Kinematic and Morphological Variation
,”
J. Exp. Biol.
,
200
(
21
), pp.
2723
2745
.10.1242/jeb.200.21.2723
39.
Reade
,
J.
, and
Jankauski
,
M.
,
2022
, “
Investigation of Chordwise Functionally Graded Flexural Rigidity in Flapping Wings Using a Two-Dimensional Pitch–Plunge Model
,”
Bioinspiration Biomimetics
,
17
(
6
), p.
066007
.10.1088/1748-3190/ac8f05
40.
Bergou
,
A. J.
,
Xu
,
S.
, and
Wang
,
Z. J.
,
2007
, “
Passive Wing Pitch Reversal in Insect Flight
,”
J. Fluid Mech.
,
591
, pp.
321
337
.10.1017/S0022112007008440
41.
Schwab
,
R.
,
Reade
,
J.
, and
Jankauski
,
M.
,
2022
, “
Quasi Three-Dimensional Deformable Blade Element and Unsteady Vortex Lattice Reduced-Order Modeling of Fluid–Structure Interaction in Flapping Wings
,”
Phys. Fluids
,
34
(
12
), p. 121903.10.1063/5.0129128
42.
Katz
,
J.
, and
Plotkin
,
A.
,
2001
,
Low-Speed Aerodynamics
, Vol.
13
,
Cambridge University Press
, Cambridge, London, UK.
43.
Long
,
L. N.
, and
Fritz
,
T. E.
,
2004
, “
Object-Oriented Unsteady Vortex Lattice Method for Flapping Flight
,”
J. Aircr.
,
41
(
6
), pp.
1275
1290
.10.2514/1.7357
44.
Faure
,
T.
,
Roncin
,
K.
,
Viaud
,
B.
,
Simonet
,
T.
, and
Daridon
,
L.
,
2022
, “
Flapping Wing Propulsion: Comparison Between Discrete Vortex Method and Other Models
,”
Phys. Fluids
,
34
(
3
), p.
034108
.10.1063/5.0083158
45.
Nguyen
,
A. T.
,
Kim
,
J.-K.
,
Han
,
J.-S.
, and
Han
,
J.-H.
,
2016
, “
Extended Unsteady Vortex-Lattice Method for Insect Flapping Wings
,”
J. Aircr.
,
53
(
6
), pp.
1709
1718
.10.2514/1.C033456
46.
Lambert
,
T.
,
2015
, “
Modeling of Aerodynamic Forces in Flapping Flight With the Unsteady Vortex Lattice Method
,”
Master thesis
, University of Liege, Liege, Belgium.https://orbi.uliege.be/bitstream/2268/201079/1/TFE_LAMBERT_Thomas.pdf
47.
Combes
,
S. A.
, and
Daniel
,
T. L.
,
2003a
, “
Flexural Stiffness in Insect Wings i. scaling and the Influence of Wing Venation
,”
J. Exp. Biol.
,
206
(
17
), pp.
2979
2987
.10.1242/jeb.00523
48.
Willmott
,
A. P.
, and
Ellington
,
C. P.
,
1997b
, “
The Mechanics of Flight in the Hawkmoth Manduca Sexta i. kinematics of Hovering and Forward Flight
,”
J. Exp. Biol.
,
200
(
21
), pp.
2705
2722
.10.1242/jeb.200.21.2705
49.
Gau
,
J.
,
Wold
,
E. S.
,
Lynch
,
J.
,
Gravish
,
N.
, and
Sponberg
,
S.
,
2022
, “
The Hawkmoth Wingbeat is Not at Resonance
,”
Biol. Lett.
,
18
(
5
), p.
20220063
.10.1098/rsbl.2022.0063
50.
Holland
,
J. H.
,
1992
, “
Genetic Algorithms
,”
Sci. Am.
,
267
(
1
), pp.
66
72
.10.1038/scientificamerican0792-66
51.
Lambora
,
A.
,
Gupta
,
K.
, and
Chopra
,
K.
,
2019
, “
Genetic Algorithm-a Literature Review
,” International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (
COMITCon
), Faridabad, India, Feb. 14–16, pp.
380
384
.10.1109/COMITCon.2019.8862255
52.
Hellwig
,
M.
, and
Beyer
,
H.-G.
,
2019
, “
Benchmarking Evolutionary Algorithms for Single Objective Real-Valued Constrained Optimization–A Critical Review
,”
Swarm Evol. Comput.
,
44
, pp.
927
944
.10.1016/j.swevo.2018.10.002
53.
Ando
,
N.
, and
Kanzaki
,
R.
,
2016
, “
Flexibility and Control of Thorax Deformation During Hawkmoth Flight
,”
Biol. Lett.
,
12
(
1
), p.
20150733
.10.1098/rsbl.2015.0733
54.
Tu
,
M. S.
, and
Daniel
,
T. L.
,
2004
, “
Submaximal Power Output From the Dorsolongitudinal Flight Muscles of the Hawkmoth Manduca Sexta
,”
J. Exp. Biol.
,
207
(
26
), pp.
4651
4662
.10.1242/jeb.01321
55.
Zheng
,
L.
,
Hedrick
,
T. L.
, and
Mittal
,
R.
,
2013
, “
A Multi-Fidelity Modelling Approach for Evaluation and Optimization of Wing Stroke Aerodynamics in Flapping Flight
,”
J. Fluid Mech.
,
721
, pp.
118
154
.10.1017/jfm.2013.46
56.
Cranston
,
B.
, and
Palazotto
,
A.
,
2014
, “
Evaluation of the Thorax of Manduca Sexta for Flapping Wing Micro Air Vehicle Applications
,”
Int. J. Micro Air Veh.
,
6
(
3
), pp.
191
210
.10.1260/1756-8293.6.3.191
57.
Usherwood
,
J. R.
, and
Ellington
,
C. P.
,
2002
, “
The Aerodynamics of Revolving Wings i. model Hawkmoth Wings
,”
J. Exp. Biol.
,
205
(
11
), pp.
1547
1564
.10.1242/jeb.205.11.1547
58.
Harbig
,
R. R.
,
Sheridan
,
J.
, and
Thompson
,
M. C.
,
2013
, “
Relationship Between Aerodynamic Forces, Flow Structures and Wing Camber for Rotating Insect Wing Planforms
,”
J. Fluid Mech.
,
730
, pp.
52
75
.10.1017/jfm.2013.335
59.
Ennos
,
A.
,
1995
, “
Mechanical Behaviour in Torsion of Insect Wings, Blades of Grass and Other Cambered Structures
,”
Proc. R. Soc. London Ser. B Biol. Sci.
,
259
(
1354
), pp.
15
18
.10.1098/rspb.1995.0003
60.
Combes
,
S. A.
, and
Daniel
,
T.
,
2003b
, “
Flexural Stiffness in Insect Wings ii. spatial Distribution and Dynamic Wing Bending
,”
J. Exp. Biol.
,
206
(
17
), pp.
2989
2997
.10.1242/jeb.00524
61.
Lionetti
,
S.
,
Hedrick
,
T. L.
, and
Li
,
C.
,
2022
, “
Aerodynamic Explanation of Flight Speed Limits in Hawkmoth-Like Flapping-Wing Insects
,”
Phys. Rev. Fluids
,
7
(
9
), p.
093104
.10.1103/PhysRevFluids.7.093104
62.
Faux
,
D.
,
Thomas
,
O.
,
Cattan
,
E.
, and
Grondel
,
S.
,
2018
, “
Two Modes Resonant Combined Motion for Insect Wings Kinematics Reproduction and Lift Generation
,”
Europhys. Lett.
,
121
(
6
), p.
66001
.10.1209/0295-5075/121/66001
63.
Combes
,
S. A.
, and
Daniel
,
T. L.
,
2003c
, “
Into Thin Air: Contributions of Aerodynamic and Inertial-Elastic Forces to Wing Bending in the Hawkmoth Manduca Sexta
,”
J. Exp. Biol.
,
206
(
17
), pp.
2999
3006
.10.1242/jeb.00502
64.
Mao
,
S.
, and
Gang
,
D.
,
2003
, “
Lift and Power Requirements of Hovering Insect Flight
,”
Acta Mech. Sin.
,
19
(
5
), pp.
458
469
.10.1007/BF02484580
65.
Reid
,
H. E.
,
Schwab
,
R. K.
,
Maxcer
,
M.
,
Peterson
,
R. K.
,
Johnson
,
E. L.
, and
Jankauski
,
M.
,
2019
, “
Wing Flexibility Reduces the Energetic Requirements of Insect Flight
,”
Bioinspiration Biomimetics
,
14
(
5
), p.
056007
.10.1088/1748-3190/ab2dbc
You do not currently have access to this content.