The current paper investigates the nonlinear stationary oscillations of a quarter vehicle model with two degrees of freedom subjected to a vertical road excitation. The damping of the wheel suspension has a bilinear characteristic, so that the damping strength is larger during compression than during restitution of the damper. For the optimization of the damping behavior the peak-to-peak swings have to be as small as possible. The unevenness of the road was approximated by filtered white noise which was modelled numerically using pseudorandom sequences. The first order form of the governing equations was transformed to hyperspherical representation. The stability was determined according to the largest Liapunov exponents obtained from the numerical simulation. For a chosen parameter range stability charts were constructed both in the stochastic and harmonic case (for comparison).

1.
Minorsky
,
N.
, 1962,
Nonlinear Oscillations
,
Krieger
, New York.
2.
Andronov
,
A. A.
,
Vitt
,
A. A.
, and
Khaiken
,
S. E.
, 1966,
Theory of Oscillators
,
Addison-Wesley
, Reading.
3.
Maezawa
,
S.
, and
Furukawa
,
S.
, 1973, “
Superharmonic Resonance in Piecewise Linear Systems
,”
Bull. JSME
0021-3764,
16
, pp.
931
941
.
4.
Dragoni
,
R.
, and
Repaci
,
A.
, 1979, “
Influence of Viscous-Coulomb Damping on a System with Steps
,”
Mech. Res. Commun.
0093-6413,
6
, pp.
283
288
.
5.
Maezawa
,
S.
, 1961, “
Steady Forced Vibrations of Unsymmetrical Piecewise Linear Systems
,”
Bull. JSME
0021-3764,
4
, pp.
201
229
.
6.
Maezawa
,
S.
,
Kumano
,
H.
, and
Minakuchi
,
Y.
, 1980, “
Forced Vibrations in an Unsymmetrical Linear System Excited by General Periodic Forcing Functions
,”
Bull. JSME
0021-3764,
23
, pp.
68
75
.
7.
Shaw
,
S. W.
, and
Holmes
,
P. J.
, 1983, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
0022-460X,
90
(
1
), pp.
129
155
.
8.
Wong
,
C. W.
,
Zhang
,
W. S.
, and
Lau
,
S. L.
, 1991, “
Periodic Forced Vibration of Unsymmetrical Piecewise-Linear Systems by Incremental Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
149
(
1
), pp.
91
105
.
9.
Senator
,
M.
, 1970, “
Existence and Stability of Periodic Motions of a Harmonically Forced Impacting System
,”
J. Acoust. Soc. Am.
0001-4966,
47
, pp.
1390
1397
.
10.
Holmes
,
P. J.
, 1982, “
The Dynamics of Repeated Impact with a Sinusoidally Vibrating Table
,”
J. Sound Vib.
0022-460X,
84
, pp.
173
189
.
11.
Thompson
,
J. M. T.
, 1982, “
A Strange Attractor in the Resonance of an Impact Oscillator
” (preprint, Department of Civil Engineering, University College, London).
12.
Thompson
,
J. M. T.
, and
Ghaffari
,
R.
, 1982, “
Chaos After Period Doubling Bifurcations in the Resonance of an Impact Oscillator
,”
Phys. Lett.
0375-9601,
91A
, pp.
5
8
.
13.
Shaw
,
S. W.
, 1985, “
Forced Vibrations of a Beam with One-Sided Amplitude Constraint: Theory and Experiment
,”
J. Sound Vib.
0022-460X,
99
(
2
), pp.
199
212
.
14.
Stenson
,
A.
, and
Nordmark
,
A. B.
, 1994, “
Experimental Investigations of Some Consequences of Low Impacts in the Chaotic Dynamics of Mechanical System
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
347
, pp.
439
448
.
15.
Wierçigroch
,
M.
, and
Sin
,
V. W. T.
, 1998, “
Experimental Study of a Symmetrical Piecewise Base-Excited Oscillator
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
657
663
.
16.
Wierçigroch
,
M.
, and
Sin
,
V. W. T.
, 1999, “
A Symmetrically Piecewise Linear Oscillator: Design and Measurement
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
213
(
3
), pp.
241
249
.
17.
Natsiavas
,
S.
, 1998, “
Stability of Piecewise Linear Oscillators with Viscous and Dry Friction Damping
,”
J. Sound Vib.
0022-460X,
217
(
3
), pp.
507
522
.
18.
Hetzler
,
H.
, 2003, “
Stabilität eines Nichtlinearen Schwingungssystems Unter Harmonischer und Stochastischer Anregung
,” Master thesis, University of Karlsruhe.
19.
Lukács
,
A.
, 2004, “
Kovarianz- und Stabilitätsanalyse Stationärer Nichtlinearer Fahrzeugschwingungen
,” Master thesis, University of Karlsruhe.
20.
Papoulis
,
A.
, 1985,
Probability, Random Variables and Stochastic Processes
,
McGraw-Hill
, New York.
21.
Heinrich
,
W.
, and
Henning
,
K.
, 1977,
Zufallsschwingungen Mechanischer Systeme
,
Akademie Verlag
, Berlin.
22.
Wedig
,
W.
, 2003, “
Dynamics of Cars Driving on Stochastic Roads
,” presented at the 4th International Conference on Computational Stochastic Mechanics, Corfu, Greece, June, in Computational Stochastic Mechanics,
P. D.
Spanos
and
G.
Deodatis
, (eds.),
Millpress
, Rotterdam, pp.
647
654
.
23.
Wedig
,
W.
, 2003, “
Characteristic Numbers—Vertical Dynamics of Cars Riding on Roads
,” presented at 6ème Congres de Mécanique, Mécanique des Solides, Tome I, Tanger, Maroc, April, Université Abdelmalek Essaâdi, Societé Marocanie des Sciences Mécanique, pp.
44
45
.
24.
Liapunov
,
A. M.
, 1907, Problème Général de la Stabilité du Mouvement, in French (originally in Russian 1892).
25.
Arnold
,
L.
, 1998,
Random Dynamical Systems
,
Springer
, Heidelberg.
26.
Friedrich
,
H.
, and
Lange
,
C.
, 1999,
Stochastische Prozesse in Natur und Technik
,
Harri Deutsch Verlag
.
You do not currently have access to this content.