Abstract

The existing flexible cable dynamics model, established using the absolute nodal coordinate formulation (ANCF), suffers from the issue of strain coupling. It also does not consider the nonlinear mechanical properties inside the flexible cable and consequently provides an inaccurate description of the strain and the constitutive properties. In this study, the axial strain of the flexible cable was redescribed by constructing an equivalent rod element in order to decouple the axial strain and bending strain. Subsequently, a strain-decoupled ANCF cable element was derived. Then, by analyzing the geometry of the stranded flexible cable as well as the relative sliding and friction between the wires in the cable, the axial stiffness and bending stiffness calculation formulae were obtained and the decoupled-stranded model was established. This study, therefore, achieved an improvement upon the traditional model in describing the strain and constitutive properties. The simulation results show that the decoupled model eliminates the strain coupling effect compared with the traditional model and has the advantages of fast convergence and high accuracy. The stiffness characteristics analysis shows that the bending stiffness of the cable changes during the bending process due to the relative motion and friction between the wires. Finally, the comparative analysis shows that the accuracy of the decoupled-stranded model is very close to that of the detailed model and performs much better than the other ANCF models, and the complexity of the decoupled-stranded model is far lower than that of the detailed model.

References

1.
Williams
,
P.
,
2012
, “
A Review of Space Tether Technology
,”
Recent Pat. Space Technol.
,
2
(
1
), pp.
22
36
.10.2174/1877611611202010022
2.
Meng
,
Z.
,
Huang
,
P.
,
Yingbo
,
L.
, and
Yongxin
,
H.
,
2019
, “
Applications and Development of Space Tether in on-Orbit Servicing
,”
J. Astronaut.
,
40
(
10
), pp.
1134
1145
.https://kns.cnki.net/kcms/detail/detail.aspx?FileName=YHXB201910005&DbName=CJFQ2019
3.
Zhang
,
Y.
,
Wei
,
C.
,
Pan
,
D.
, and
Zhao
,
Y.
,
2016
, “
A Dynamical Approach to Space Capturing Procedure Using Flexible Cables
,”
Aircr. Eng. Aerosp. Technol.
,
88
(
1
), pp.
53
65
.10.1108/AEAT-07-2014-0107
4.
Zhou
,
L.
,
2013
, “
Study on the Knitting Process and Mechanical Properties of UHMWPE Fiber Rope
,” Master's thesis,
Qingdao University
,
Qingdao, China (in Chinese)
.
5.
Yao
,
F.
, and
Shi
,
A.
,
2019
, “
Dynamic Analysis of Tethered Satellite Deployment
,”
Flight Control Detect.
,
2
(
6
), pp.
33
40
.https://kns.cnki.net/kcms/detail/detail.aspx?FileName=FKTC201906005&DbName=CJFQ2019
6.
Arbatani
,
S.
,
Callejo
,
A.
,
Kövecses
,
J.
,
Kalantari
,
M.
,
Marchand
,
N. R.
, and
Dargahi
,
J.
,
2016
, “
An Approach to Directional Drilling Simulation: Finite Element and Finite Segment Methods With Contact
,”
Comput. Mech.
,
57
(
6
), pp.
1001
1015
.10.1007/s00466-016-1274-2
7.
Hall
,
M.
, and
Goupee
,
A.
,
2015
, “
Validation of a Lumped-Mass Mooring Line Model With Deepcwind Semisubmersible Model Test Data
,”
Ocean Eng.
,
104
, pp.
590
603
.10.1016/j.oceaneng.2015.05.035
8.
Zhang
,
L.
,
Naxin
,
W.
,
Zhu
,
J.
, and
Liu
,
Z.
,
2018
, “
Time Simulation Study of Taut Wire Position Reference System
,”
Ship Eng.
,
40
(
S1
), pp.
98
103
.https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CANB2018S1023&DbName=CJFQ2018
9.
Quisenberry
,
J.
, and
Arena
,
A.
,
2006
, “
Discrete Cable Modeling and Dynamic Analysis
,”
AIAA
Paper No. 2006-427.10.2514/6.2006-424
10.
Shabana
,
A. A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
(
3
), pp.
339
348
.10.1023/A:1009740800463
11.
Shabana
,
A. A.
,
2015
, “
Definition of ANCF Finite Elements
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
054506
.10.1115/1.4030369
12.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.10.1115/1.1410100
13.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
614
621
.10.1115/1.1410099
14.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Co-Ordinate Formulation
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
109
130
.10.1007/s11071-006-1856-1
15.
Dmitrochenko
,
O.
, and
Mikkola
,
A.
,
2011
, “
Digital Nomenclature Code for Topology and Kinematics of Finite Elements Based on the Absolute Nodal Co-Ordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K
,
225
(
1
), pp.
34
51
.10.1177/2041306810392115
16.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
(
1/2
), pp.
53
74
.10.1023/B:NODY.0000014552.68786.bc
17.
Schwab
,
A. L.
, and
Meijaard
,
J. P.
,
2005
, “
Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation
,”
ASME
Paper No. DETC2005-85104.10.1115/DETC2005-85104
18.
García-Vallejo
,
D.
,
Mikkola
,
A. M.
, and
Escalona
,
J. L.
,
2007
, “
A New Locking-Free Shear Deformable Finite Element Based on Absolute Nodal Coordinates
,”
Nonlinear Dyn.
,
50
(
1–2
), pp.
249
264
.10.1007/s11071-006-9155-4
19.
Orzechowski
,
G.
, and
Fra̧Czek
,
J.
,
2017
, “
Volumetric Locking Suppression Method for Nearly Incompressible Nonlinear Elastic Multi-Layer Beams Using ANCF Elements
,”
J. Theor. Appl. Mech.
,
55
(
3
), p.
977
.10.15632/jtam-pl.55.3.977
20.
Gerstmayr
,
J.
,
Matikainen
,
M. K.
, and
Mikkola
,
A. M.
,
2008
, “
A Geometrically Exact Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
20
(
4
), pp.
359
384
.10.1007/s11044-008-9125-3
21.
Nachbagauer
,
K.
,
Gruber
,
P.
, and
Gerstmayr
,
J.
,
2013
, “
Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Static and Linearized Dynamic Examples
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021004
.10.1115/1.4006787
22.
Szabo
,
B. A.
,
1986
, “
Implementation of a Finite Element Software System With H and P Extension Capabilities
,”
Finite Elem. Anal. Des.
,
2
(
1–2
), pp.
177
194
.10.1016/0168-874X(86)90016-8
23.
Leech
,
C. M.
,
2002
, “
The Modelling of Friction in Polymer Fibre Ropes
,”
Int. J. Mech. Sci.
,
44
(
3
), pp.
621
643
.10.1016/S0020-7403(01)00095-9
24.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2013
, “
Cable Modeling and Internal Damping Developments
,”
ASME Appl. Mech. Rev.
,
65
(
1
), p.
010801
.10.1115/1.4023489
25.
Velinsky
,
S.
,
1985
, “
General Nonlinear Theory for Complex Wire Rope
,”
Int. J. Mech. Sci.
,
27
(
7–8
), pp.
497
507
.10.1016/0020-7403(85)90040-2
26.
Costello
,
G. A.
,
1997
,
Theory of Wire Rope
,
Springer Science & Business Media
,
New York
.
27.
Jolicoeur
,
C.
, and
Cardou
,
A.
,
1996
, “
Semicontinuous Mathematical Model for Bending of Multilayered Wire Strands
,”
J. Eng. Mech.
,
122
(
7
), pp.
643
650
.10.1061/(ASCE)0733-9399(1996)122:7(643)
28.
Zhong
,
M.
,
2003
, “
Dynamic Analysis of Cables With Variable Flexural Rigidity
,”
Ph.D. thesis
,
University of Hawaii at Manoa
,
Honolulu, HI
.https://scholarspace.manoa.hawaii.edu/bitstream/handle/10125/6990/uhm_ms_3787_r.pdf?sequence=2
29.
Liu
,
X.
,
2004
, “
Cable Vibration Considering Internal Friction
,” Master's thesis,
University of Hawaii at Manoa
,
Honolulu, HI
.
30.
Hong
,
K.-J.
,
Yi
,
C.
, and
Lee
,
Y-K.
,
2012
, “
Geometry and Friction of Helically Wrapped Wires in a Cable Subjected to Tension and Bending
,”
Int. J. Steel Struct.
,
12
(
2
), pp.
233
242
.10.1007/s13296-012-2007-9
31.
Langlois
,
S.
,
Legeron
,
F.
, and
Lévesque
,
F.
,
2014
, “
Time History Modeling of Vibrations on Overhead Conductors With Variable Bending Stiffness
,”
IEEE Trans. Power Delivery
,
29
(
2
), pp.
607
614
.10.1109/TPWRD.2013.2279604
32.
Wang
,
Z.
,
Zhang
,
L.
,
Song
,
J.
,
Cao
,
G.
, and
Liu
,
X.
,
2013
, “
A Novel Approach for Modeling and Simulation of Helix Twisting Structure Based on Mass-Spring Model
,”
Adv. Mech. Eng.
,
5
(
4
), p.
971251
.10.1155/2013/971251
33.
Jiang
,
W.-G.
,
2012
, “
A Concise Finite Element Model for Pure Bending Analysis of Simple Wire Strand
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
69
73
.10.1016/j.ijmecsci.2011.09.008
34.
Erdonmez
,
C.
, and
Imrak
,
C. E.
,
2011
, “
A Finite Element Model for Independent Wire Rope Core With Double Helical Geometry Subjected to Axial Loads
,”
Sadhana
,
36
(
6
), pp.
995
1008
.10.1007/s12046-011-0053-1
35.
Lalonde
,
S.
,
Guilbault
,
R.
, and
Légeron
,
F.
,
2017
, “
Modeling Multilayered Wire Strands, a Strategy Based on 3D Finite Element Beam-to-Beam Contacts-Part I: Model Formulation and Validation
,”
Int. J. Mech. Sci.
,
126
, pp.
281
296
.10.1016/j.ijmecsci.2016.12.014
36.
Lalonde
,
S.
,
Guilbault
,
R.
, and
Langlois
,
S.
,
2017
, “
Modeling Multilayered Wire Strands, a Strategy Based on 3D Finite Element Beam-to-Beam Contacts—Part II: Application to Wind-Induced Vibration and Fatigue Analysis of Overhead Conductors
,”
Int. J. Mech. Sci.
,
126
, pp.
297
307
.10.1016/j.ijmecsci.2016.12.015
37.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.10.1115/1.4023487
38.
Garcíd;a-Vallejo
,
D.
,
Valverde
,
J.
, and
Domínguez
,
J.
,
2005
, “
An Internal Damping Model for the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
42
(
4
), pp.
347
369
.10.1007/s11071-005-6445-1
39.
Sanborn
,
G. G.
,
Choi
,
J.
, and
Choi
,
J. H.
,
2011
, “
Curve-Induced Distortion of Polynomial Space Curves, Flat-Mapped Extension Modeling, and Their Impact on ANCF Thin-Plate Finite Elements
,”
Multibody Syst. Dyn.
,
26
(
2
), pp.
191
211
.10.1007/s11044-011-9248-9
40.
Erdönmez
,
C.
, and
İmrak
,
C. E.
,
2009
, “
Modeling and Numerical Analysis of the Wire Strand
,”
Deniz Bilimleri Mühendisligi Derg.
,
5
(
1
), pp.
30
38
.
41.
Cardou
,
A.
,
2013
, “Stick-Slip Mechanical Models for Overhead Electrical Conductors in Bending,”
GREMCA, Université Laval
,
Québec city, QC, Canada
.
42.
Papailiou
,
K.
,
1997
, “
On the Bending Stiffness of Transmission Line Conductors
,”
IEEE Trans. Power Delivery
,
12
(
4
), pp.
1576
1588
.10.1109/61.634178
43.
Johnson
,
K. L.
, and
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
44.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
,
2007
, “
On an Implementation of the Hilber-Hughes-Taylor Method in the Context of Index 3 Differential-Algebraic Equations of Multibody Dynamics (DETC2005-85096)
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
73
85
.10.1115/1.2389231
You do not currently have access to this content.