Abstract

The linear and nonlinear stiffness coupling forces in dynamical oscillators are usually dominated by positive stiffness components. Therefore, plotting the resultant force in y-axis with respect to the change in displacement in x-axis results in an odd symmetry in the first and third quadrants of the xy-plane. However, the appearance of negative stiffness content in coupling elements between dynamical oscillators generates a force that can be dominated by an odd symmetry in the second and fourth quadrants. The underlying nonlinear dynamical behavior of systems employing this kind of force has not been well-studied in the literature. Accordingly, the considered system here is composed of two linear oscillators that are nonlinearly coupled by a force of which the negative stiffness content is dominant. Therefore, the underlying dynamical behavior of the considered system in physical and dimensionless forms is studied on the frequency-energy plots where many backbone curves of periodic solution have been obtained. It is found that within a wide range of nonlinear frequency levels, the nonlinear coupling force is dominated by a strong negative stiffness content at the obtained frequency-energy plots backbones.

References

1.
Jones
,
T. B.
, and
Nenad
,
N. G.
,
2013
,
Electromechanics and MEMS
,
Cambridge University Press
, Cambridge, UK.
2.
Welte
,
J.
,
Kniffka
,
T. J.
, and
Horst
,
E.
,
2013
, “
Parametric Excitation in a Two Degree of Freedom MEMS System
,”
Shock Vib.
,
20
(
6
), pp.
1113
1124
.10.1155/2013/502109
3.
Pérez Polo
,
M. F.
,
Manuel
,
P. M.
, and
Javier
,
G. C.
,
2009
, “
Chaotic Dynamic and Control for Micro-Electro-Mechanical Systems of Massive Storage With Harmonic Base Excitation
,”
Chaos Solitons Fractals
,
39
(
3
), pp.
1356
1370
.10.1016/j.chaos.2007.06.010
4.
Pérez Polo
,
M. F.
,
Manuel
,
P. M.
, and
Javier
,
G. C.
,
2010
, “
Self-Oscillations and Chaotic Dynamic of a Nonlinear Controlled Nano-Oscillator
,”
J. Comput. Theor. Nanosci.
,
7
(
11
), pp.
2463
2477
.10.1166/jctn.2010.1634
5.
Machado
,
L. G.
,
Marcelo
,
S. A.
, and
Pedro
,
M. C. P.
,
2003
, “
Nonlinear Dynamics and Chaos in Coupled Shape Memory Oscillators
,”
Int. J. Solids Struct.
,
40
(
19
), pp.
5139
5156
.10.1016/S0020-7683(03)00260-9
6.
Kurt
,
M.
,
Eriten
,
M.
,
McFarland
,
M. D.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2015
, “
Methodology for Model Updating of Mechanical Components With Local Nonlinearities
,”
J. Sound Vib.
,
357
, pp.
331
348
.10.1016/j.jsv.2015.07.012
7.
Cveticanin
,
L.
,
2015
, “
A Solution Procedure Based on the Ateb Function for a Two-Degree-of-Freedom Oscillator
,”
J. Sound Vib.
,
346
, pp.
298
313
.10.1016/j.jsv.2015.02.016
8.
Al-Shudeifat
,
M. A.
, and
Thomas
,
B. D.
, “
Analytical Solution of Two Coupled Oscillators With a Nonlinear Coupling Resorting Force
,”
ASME
Paper No. IMECE2014-39971. 10.1115/IMECE2014-39971
9.
Al-Shudeifat
,
M. A.
, and
Saeed
,
A. S.
,
2017
, “
Analytical Treatment for Bistable Nonlinearly Coupled Oscillators
,”
ASME
Paper No. DETC2017-67762.10.1115/DET C2017-67762
10.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
M. D.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer Science & Business Media
, Berlin.
11.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J.-C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
12.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2009
, “
Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
.10.1016/j.ymssp.2008.04.003
13.
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Lee
,
Y. S.
,
McFarland
,
M. D.
,
Kowtko
,
J. J.
, and
Bergman
,
L. A.
,
2005
, “
Energy Transfers in a System of Two Coupled Oscillators With Essential Nonlinearity: 1: 1 Resonance Manifold and Transient Bridging Orbits
,”
Nonlinear Dyn.
,
42
(
3
), pp.
283
303
.10.1007/s11071-005-4475-3
14.
Kerschen
,
G.
,
Kowtko
,
J. J.
,
McFarland
,
M. D.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2006
, “
Theoretical and Experimental Study of Multimodal Targeted Energy Transfer in a System of Coupled Oscillators
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
285
309
.10.1007/s11071-006-9073-5
15.
Renson
,
L.
,
Kerschen
,
G.
, and
Cochelin
,
B.
,
2016
, “
Numerical Computation of Nonlinear Normal Modes in Mechanical Engineering
,”
J. Sound Vib.
,
364
, pp.
177
206
.10.1016/j.jsv.2015.09.033
16.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.10.1088/0964-1726/22/2/023001
17.
Anastasio
,
D.
,
Fasana
,
A.
,
Garibaldi
,
L.
, and
Marchesiello
,
S.
,
2020
, “
Nonlinear Dynamics of a Duffing-Like Negative Stiffness Oscillator: Modeling and Experimental Characterization
,”
Shock Vib.
,
2020
, pp.
1
13
.10.1155/2020/3593018
18.
Al-Shudeifat
,
M. A.
,
2014
, “
Highly Efficient Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1905
1920
.10.1007/s11071-014-1256-x
You do not currently have access to this content.