Abstract

The locomotive wheelsets configured with high-power AC traction motors are very prone to slip under poor friction conditions, which usually impair traction/braking efficiency. To avoid the adverse consequence caused by the conspicuous slipping behaviors of wheels, the antislip control modules are consequently equipped on high-power locomotives. This paper presents an advanced antislip control algorithm for heavy-haul locomotives traveling by complex wheel/rail friction conditions. The proposed antislip control model is implemented in a three-dimensional (3D) heavy-haul train-track coupled dynamics model, in which the real-time estimation of wheel/rail adhesion conditions and relevant optimization adjustment of control threshold values are considered. The wheel/rail dynamic interactions of the heavy-haul locomotive under traction/braking conditions and multifarious friction conditions are investigated. The control effects of the antislip controllers with changeable and constant threshold values are compared. It is shown that the traction/braking loads and friction conditions have a significant effect on wheel/rail interactions. The optimal traction/braking efficiency can be realized by adopting the antislip controller with alterable threshold values.

References

1.
Wu
,
B.
,
Wen
,
Z.
,
Wang
,
H.
, and
Jin
,
X.
,
2014
, “
Numerical Analysis on Wheel/Rail Adhesion Under Mixed Contamination of Oil and Water With Surface Roughness
,”
Wear
,
314
(
1–2
), pp.
140
147
.10.1016/j.wear.2013.11.041
2.
Chen
,
H.
,
Furuya
,
T.
,
Fukagai
,
S.
,
Saga
,
S.
,
Ikoma
,
J.
,
Kimura
,
K.
, and
Suzumura
,
J.
,
2020
, “
Wheel Slip/Slide and Low Adhesion Caused by Fallen Leaves
,”
Wear
,
446–447
, p.
203187
.10.1016/j.wear.2020.203187
3.
Li
,
Z.
,
Arias-Cuevas
,
O.
,
Lewis
,
R.
, and
Gallardo-Hernández
,
E. A.
,
2009
, “
Rolling-Sliding Laboratory Tests of Friction Modifiers in Leaf Contaminated Wheel/Rail Contacts
,”
Tribol. Lett.
,
33
(
2
), pp.
97
109
.10.1007/s11249-008-9393-3
4.
Chen
,
H.
,
Ishida
,
M.
,
Namura
,
A.
,
Baek
,
K. S.
,
Nakahara
,
T.
,
Leban
,
B.
, and
Pau
,
M.
,
2011
, “
Estimation of Wheel/Rail Adhesion Coefficient Under Wet Condition With Measured Boundary Friction Coefficient and Real Contact Area
,”
Wear
,
271
(
1–2
), pp.
32
39
.10.1016/j.wear.2010.10.022
5.
Buckley-Johnstone
,
L.
,
Trummer
,
G.
,
Voltr
,
P.
,
Six
,
K.
, and
Lewis
,
R.
,
2020
, “
Full-Scale Testing of Low Adhesion Effects With Small Amounts of Water in the Wheel/Rail Interface
,”
Tribol. Int.
,
141
, p.
105907
.10.1016/j.triboint.2019.105907
6.
Zhao
,
X.
,
Wen
,
Z.
,
Zhu
,
M.
, and
Jin
,
X.
,
2014
, “
A Study on High-Speed Rolling Contact Between a Wheel and a Contaminated Rail
,”
Veh. Syst. Dyn.
,
52
(
10
), pp.
1270
1287
.10.1080/00423114.2014.934845
7.
Nia
,
S.
,
Casanueva
,
C.
, and
Stichel
,
S.
,
2015
, “
Prediction of RCF and Wear Evolution of Iron-Ore Locomotive Wheels
,”
Wear
,
338–339
, pp.
62
72
.
8.
Tao
,
G.
,
Wen
,
Z.
,
Guan
,
Q.
,
Zhao
,
X.
,
Luo
,
Y.
, and
Jin
,
X.
,
2019
, “
Locomotive Wheel Wear Simulation in Complex Environment of Wheel-Rail Intersurface
,”
Wear
,
430–431
, pp.
214
221
.10.1016/j.wear.2019.05.012
9.
Spiryagin
,
M.
,
Kwan
,
S.
, and
Hong
,
H.
,
2008
, “
Control System for Maximum Use of Adhesive Forces of a Railway Vehicle in a Tractive Mode
,”
Mech. Syst. Sig. Process.
,
22
(
3
), pp.
709
720
.10.1016/j.ymssp.2007.09.018
10.
Spiryagin
,
M.
,
Persson
,
I.
,
Wu
,
Q.
,
Bosomworth
,
C.
,
Wolfs
,
P.
, and
Cole
,
C.
,
2019
, “
A co-Simulation Approach for Heavy Haul Long Distance Locomotive-Track Simulation Studies
,”
Veh. Syst. Dyn.
,
57
(
9
), pp.
1363
1380
.10.1080/00423114.2018.1504088
11.
Tian
,
Y.
,
Liu
,
S.
,
Daniel
,
W.
, and
Meehan
,
P.
,
2015
, “
Investigation of the Impact of Locomotive Creep Control on Wear Under Changing Contact Conditions
,”
Veh. Syst. Dyn.
,
53
(
5
), pp.
692
709
.10.1080/00423114.2015.1020815
12.
Tian
,
Y.
,
Daniel
,
W.
, and
Meehan
,
P.
,
2016
, “
Real-Time Rail-Wheel Wear Damage Control
,”
Int. J. Rail. Trans.
,
4
(
2
), pp.
113
129
.10.1080/23248378.2015.1121411
13.
Yang
,
Y.
,
Guo
,
X.
,
Sun
,
Y.
,
Ling
,
L.
,
Zhang
,
T.
,
Wang
,
K.
, and
Zhai
,
W.
,
2021
, “
Non-Hertzian Contact Analysis of Heavy-Haul Locomotive Wheel/Rail Dynamic Interactions Under Changeable Friction Conditions
,”
Veh. Syst. Dyn.
epub.10.1080/00423114.2021.1902541
14.
Kadowaki
,
S.
,
Ohishi
,
K.
,
Hata
,
T.
,
Iida
,
N.
,
Takagi
,
M.
,
Sano
,
T.
, and
Yasukawa
,
S.
,
2007
, “
Antislip Readhesion Control Based on Speed-Sensorless Vector Control and Disturbance Observer for Electric Commuter Train-Series 205-5000 of the East Japan Railway Company
,”
IEEE. T. Ind. Electron.
,
54
(
4
), pp.
2001
2008
.10.1109/TIE.2007.895135
15.
Cai
,
W.
,
Li
,
D.
, and
Song
,
Y.
,
2015
, “
A Novel Approach for Active Adhesion Control of High-Speed Trains Under Antiskid Constraints
,”
IEEE. T. Intell. Transp.
,
16
(
6
), pp.
3213
3222
.10.1109/TITS.2015.2440654
16.
Diao
,
L.
,
Zhao
,
L.
,
Jin
,
Z.
,
Wang
,
L.
, and
Sharkh
,
S.
,
2017
, “
Taking Traction Control to Task: High-Adhesion-Point Tracking Based on a Disturbance Observer in Railway Vehicles
,”
IEEE Ind. Electron. Mag.
,
11
(
1
), pp.
51
62
.10.1109/MIE.2016.2644699
17.
Shrestha
,
S.
,
Spiryagin
,
M.
, and
Wu
,
Q.
,
2019
, “
Friction Condition Characterization for Rail Vehicle Advanced Braking System
,”
Mech. Syst. Sig. Process.
,
134
, p.
106324
.10.1016/j.ymssp.2019.106324
18.
Zhai
,
W.
,
2020
,
Vehicle-Track Coupled Dynamics: Theory and Applications
,
Springer Nature
,
Singapore
.
19.
Zhai
,
W.
,
Wang
,
K.
, and
Cai
,
C.
,
2009
, “
Fundamentals of Vehicle-Track Coupled Dynamics
,”
Veh. Syst. Dyn.
,
47
(
11
), pp.
1349
1376
.10.1080/00423110802621561
20.
Zhai
,
W.
,
Jin
,
X.
,
Wen
,
Z.
, and
Zhao
,
X.
,
2020
, “
Wear Problems of High-Speed Wheel/Rail Systems: Observations, Causes, and Countermeasures in China
,”
ASME Appl. Mech. Rev.
,
72
(
6
), p.
060801
.10.1115/1.4048897
21.
Ling
,
L.
,
Jiang
,
P.
,
Wang
,
K.
, and
Zhai
,
W.
,
2020
, “
Nonlinear Stability of Rail Vehicles Traveling on Vibration-Attenuating Slab Tracks
,”
ASME J. Comput. Nonlinear. Dyn.
,
15
(
7
), p.
071005
.10.1115/1.4047087
22.
Wu
,
Q.
,
Cole
,
C.
,
Spiryagin
,
M.
,
Wang
,
Y.
,
Ma
,
W.
, and
Wei
,
C.
,
2017
, “
Railway Air Brake Model and Parallel Computing Scheme
,”
ASME J. Comput. Nonlinear. Dyn.
,
12
(
5
), p.
051017
.10.1115/1.4036421
23.
Polach
,
O.
,
2005
, “
Creep Forces in Simulations of Traction Vehicles Running on Adhesion Limit
,”
Wear
,
258
(
7–8
), pp.
992
1000
.10.1016/j.wear.2004.03.046
24.
Shrestha
,
S.
,
Spiryagin
,
M.
, and
Wu
,
Q.
,
2020
, “
Real-Time Multibody Modeling and Simulation of a Scaled Bogie Test Rig
,”
Railw. Eng. Sci.
,
28
(
2
), pp.
146
159
.10.1007/s40534-020-00213-y
25.
Zirek
,
A.
, and
Onat
,
A.
,
2020
, “
A Novel Anti-Slip Control Approach for Railway Vehicles With Traction Based on Adhesion Estimation With Swarm Intelligence
,”
Railw. Eng. Sci
,.,
28
(
4
), pp.
346
364
.10.1007/s40534-020-00223-w
26.
Magyar
,
B.
,
Wohlfart
,
R.
,
Zana
,
R.
,
Hénap
,
G.
,
Csernák
,
G.
, and
Stepan
,
G.
,
2021
, “
Evaluation of Contact Force Distribution Along a Curve, Based on Measured Electric Potentials
,”
Acta. Mech.
,
232
(
3
), pp.
853
879
.10.1007/s00707-020-02898-y
27.
Shrestha
,
S.
,
Wu
,
Q.
, and
Spiryagin
,
M.
,
2019
, “
Review of Adhesion Estimation Approaches for Rail Vehicles
,”
Int. J. Rail. Transport.
,
7
(
2
), pp.
79
102
.10.1080/23248378.2018.1513344
28.
Lin
,
W.
,
Liu
,
Z.
,
Diao
,
L.
,
Zhang
,
G.
,
Chen
,
D.
, and
Li
,
Z.
,
2007
, “
Maximum Adhesion Force Control Simulated Model of Electric Locomotive
,”
IEEE International Conference on Automation and Logistics
, Jinan, China, Aug. 18–21, pp.
1704
1708
.10.1109/ICAL.2007.4338847
29.
Xue
,
D.
, and
Bai
,
L.
,
2017
, “
Numerical Algorithms for Caputo Fractional-Order Differential Equations
,”
Int. J. Control.
,
90
(
6
), pp.
1201
1211
.10.1080/00207179.2016.1158419
30.
Yang
,
R.
,
Liu
,
S.
,
Li
,
X.
,
Zhao
,
X.
, and
Pan
,
G.
,
2020
, “
Consensus of Fractional-Order Delayed Multi-Agent Systems in Riemann-Liouville Sense
,”
Neurocomputing
,
396
, pp.
123
129
.10.1016/j.neucom.2020.02.040
31.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ Controllers
,”
IEEE. Trans. Autom. Control
,
44
(
1
), pp.
208
214
.10.1109/9.739144
32.
Bai
,
L.
, and
Xue
,
D.
,
2018
, “
Universal Block Diagram Based Modeling and Simulation Schemes for Fractional-Order Control Systems
,”
ISA Trans.
,
82
, pp.
153
162
.10.1016/j.isatra.2017.04.018
You do not currently have access to this content.