Abstract

This work presents new approximate analytical solutions for the Riccati equation (RE) resulting from the application of the method of variation of parameters. The original equation is solved using another RE explicitly dependent on the independent variable. The solutions obtained are easy to implement and highly applicable, which is confirmed by solving several examples corresponding to REs whose solution is known, as well as optimizing the method to determine the density of the members that make up a population. In this way, new perspectives are open in the study of the phenomenon of pattern formation.

References

1.
Reid
,
W. T.
,
1972
,
Riccati Differential Equations. Mathematics in Science and Engineering
, Vol.
86
,
Academic Press
,
New York
.
2.
Dehghan
,
M.
, and
Taleei
,
A.
,
2010
, “
A Compact Split-Step Finite Difference Method for Solving the Nonlinear Schrödinger Equations With Constant and Variable Coefficients
,”
Comput. Phys. Commun.
,
181
(
1
), pp.
43
51
.10.1016/j.cpc.2009.08.015
3.
Rosu
,
H. C.
,
Mancas
,
S. C.
, and
Chen
,
P.
,
2014
, “
One-Parameter Families of Supersymmetric Isospectral Potentials From Riccati Solutions in Function Composition Form
,”
Ann. Phys.
,
343
, pp.
87
102
.10.1016/j.aop.2014.01.012
4.
de Lucas
,
J.
,
Tobolski
,
M.
, and
Vilariño
,
S.
,
2016
, “
Geometry of Riccati Equations Over Normed Division Algebras
,”
J. Math. Anal. Appl.
,
440
(
1
), pp.
394
414
.10.1016/j.jmaa.2016.03.031
5.
Strelchenya
,
V. M.
,
1991
, “
A New Case of Integrability of the General Riccati Equation and Its Application to Relaxation Problems
,”
J. Phys. A: Math. General
,
24
(
21
), pp.
4965
4967
.10.1088/0305-4470/24/21/010
6.
Mak
,
M.
, and
Harko
,
T.
,
2013
, “
Isotropic Stars in General Relativity
,”
Eur. Phys. J. C
,
73
(
10
), p.
2585
.10.1140/epjc/s10052-013-2585-5
7.
Harko
,
T.
,
Lobo
,
F. S. N.
, and
Mak
,
M.
,
2014
, “
A Riccati Equation Based Approach to Isotropic Scalar Field Cosmologies
,”
Int. J. Mod. Phys. D
,
23
(
07
), p.
1450063
.10.1142/S0218271814500631
8.
Gaubert
,
S.
, and
Qu
,
Z.
,
2014
, “
The Contraction Rate in Thompson's Part Metric of Order-Preserving Flows on a Cone Application to Generalized Riccati Equations
,”
J. Differential Equations
,
256
(
8
), pp.
2902
2948
.10.1016/j.jde.2014.01.024
9.
Grundland
,
A.
, and
de Lucas
,
J.
,
2017
, “
A Lie Systems Approach to the Riccati Hierarchy and Partial Differential Equations
,”
J. Differential Equations
,
263
(
1
), pp.
299
337
.10.1016/j.jde.2017.02.038
10.
Lee
,
C.-H.
,
Li
,
T.-H. S.
, and
Kung
,
F.-C.
,
1995
, “
A Riccati Equation Approach to the Robust Memoryless Stabilization of Discrete Time-Delay Systems
,”
J. Franklin Inst.
,
332
(
1
), pp.
107
114
.10.1016/0016-0032(95)00036-W
11.
Hendrickson
,
E.
,
1999
, “
Synthesis of Finite-Dimensional Riccati-Based Feedback Controls for Problems Arising in Structural Acoustics
,”
J. Franklin Inst.
,
336
(
4
), pp.
565
588
.10.1016/S0016-0032(97)00063-X
12.
Kalender
,
S.
, and
Flashner
,
H.
,
2008
, “
Control Design and Robustness Analysis of Linear Time-Periodic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), p.
041003
.10.1115/1.2960481
13.
Ast
,
A.
, and
Eberhard
,
P.
,
2009
, “
Active Vibration Control for a Machine Tool With Parallel Kinematics and Adaptronic Actuator
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
031004
.10.1115/1.3124089
14.
Costa
,
S.
, and
Balthazar
,
J. M.
,
2009
, “
On an Active Control for a Structurally Nonlinear Mechanical System, Taking Into Account an Energy Pumping
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
031005
.10.1115/1.3124090
15.
Radomirovic
,
D.
,
Djukic
,
D.
, and
Cveticanin
,
L.
,
2010
, “
The Brachistochrone With a Movable End-Point and the Nonsimultaneous Variations
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011007
.10.1115/1.4000316
16.
Phat
,
V. N.
,
2010
, “
Switched Controller Design for Stabilization of Nonlinear Hybrid Systems With Time-Varying Delays in State and Control
,”
J. Franklin Inst.
,
347
(
1
), pp.
195
207
.10.1016/j.jfranklin.2009.09.006
17.
Merat
,
K.
,
Abbaszadeh Chekan
,
J.
,
Salarieh
,
H.
, and
Alasty
,
A.
,
2015
, “
Control of Discrete Time Chaotic Systems Via Combination of Linear and Nonlinear Dynamic Programming
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011008
.10.1115/1.4027716
18.
Schindele
,
D.
, and
Aschemann
,
H.
,
2014
, “
Adaptive LQR-Control Design and Friction Compensation for Flexible High-Speed Rack Feeders
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011011
.10.1115/1.4025351
19.
Nguyen-Van
,
T.
, and
Hori
,
N.
,
2016
, “
Riccati-Based Discretization for Nonlinear Continuous-Time Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051003
.10.1115/1.4032382
20.
Long
,
X.
,
Zheng
,
P.
, and
Ren
,
S.
,
2017
, “
Active Delayed Control of Turning and Milling Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051022
.10.1115/1.4036913
21.
Schultz
,
J.
,
Flaßkamp
,
K.
, and
Murphey
,
T. D.
,
2017
, “
Variational Integrators for Structure-Preserving Filtering
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
2
), p.
021005
.10.1115/1.4034728
22.
Mak
,
M.
, and
Harko
,
T.
,
2012
, “
New Integrability Case for the Riccati Equation
,”
Appl. Math. Comput.
,
218
(
22
), pp.
10974
10981
.10.1016/j.amc.2012.04.058
23.
Mak
,
M.
, and
Harko
,
T.
,
2013
, “
New Further Integrability Cases for the Riccati Equation
,”
Appl. Math. Comput.
,
219
(
14
), pp.
7465
7471
.10.1016/j.amc.2013.01.033
24.
Dunajski
,
M.
,
2010
,
Solitons, Instantons, and Twistors
, Vol.
19
,
Oxford University Press
,
New York
.
25.
Miwa
,
T.
,
Jinbo
,
M.
,
Jimbo
,
M.
, and
Date
,
E.
,
2000
,
Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras
, Vol.
135
,
Cambridge University Press
,
Cambridge, UK
.
26.
Shi
,
M.
,
Wang
,
Z.
, and
Du
,
M.
,
2013
, “
A Modified Multi-Step Differential Transform Method for Solving Fractional Dynamic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
1
), p.
011008
.10.1115/1.4006572
27.
Jafari
,
H.
,
Tajadodi
,
H.
,
Kadkhoda
,
N.
, and
Baleanu
,
D.
,
2013
, “
Fractional Subequation Method for Cahn-Hilliard and Klein-Gordon Equations
,”
Abstr. Appl. Anal.
,
2013
, p.
587179
.10.1155/2013/587179
28.
Jafari
,
H.
,
Tajadodi
,
H.
, and
Baleanu
,
D.
,
2014
, “
Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Fractional Evolution Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021019
.10.1115/1.4025770
29.
Baleanu
,
D.
,
Uğurlu
,
Y.
,
Inc
,
M.
, and
Kilic
,
B.
,
2015
, “
Improved (G'/G)-Expansion Method for the Time-Fractional Biological Population Model and Cahn-Hilliard Equation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051016
.10.1115/1.4029254
30.
Bekir
,
A.
,
Güner
,
Ö.
, and
Ünsal
,
Ö.
,
2015
, “
The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021020
.10.1115/1.4028065
31.
Firoozjaee
,
M.
,
Yousefi
,
S.
,
Jafari
,
H.
, and
Baleanu
,
D.
,
2015
, “
On a Numerical Approach to Solve Multi-Order Fractional Differential Equations With Initial/Boundary Conditions
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061025
.10.1115/1.4029785
32.
Murillo
,
J. Q.
, and
Yuste
,
S. B.
,
2011
, “
An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021014
.10.1115/1.4002687
33.
Gafiychuk
,
V.
, and
Datsko
,
B.
,
2012
, “
Different Types of Instabilities and Complex Dynamics in Reaction-Diffusion Systems With Fractional Derivatives
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031001
.10.1115/1.4005923
34.
Owolabi
,
K. M.
, and
Atangana
,
A.
,
2017
, “
Numerical Simulation of Noninteger Order System in Subdiffusive, Diffusive, and Superdiffusive Scenarios
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031010
.10.1115/1.4035195
35.
Gürcan
,
F.
,
Kaya
,
G.
, and
Kartal
,
S.
,
2019
, “
Conformable Fractional Order Lotka–Volterra Predator–Prey Model: Discretization, Stability and Bifurcation
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
11
), p.
111007
.10.1115/1.4044313
36.
Nicolis, G., and Prigogine, I., 1977, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations, A Wiley-Interscience Publication, Wiley, New York.
37.
Weiss
,
M.
, and
Nilsson
,
T.
,
2004
, “
In a Mirror Dimly: Tracing the Movements of Molecules in Living Cells
,”
Trends Cell Biol.
,
14
(
5
), pp.
267
273
.10.1016/j.tcb.2004.03.012
38.
Langlands
,
T.
,
Henry
,
B.
, and
Wearne
,
S.
,
2007
, “
Turing Pattern Formation With Fractional Diffusion and Fractional Reactions
,”
J. Phys.: Condens. Matter
,
19
(
6
), p.
065115
.10.1088/0953-8984/19/6/065115
39.
Oliveira
,
F.
, and
Gonzalez
,
J.
,
1996
, “
Bond-Stability Criterion in Chain Dynamics
,”
Phys. Rev. B
,
54
(
6
), pp.
3954
3958
.10.1103/PhysRevB.54.3954
40.
González
,
J.
, and
Oliveira
,
F.
,
1999
, “
Nucleation Theory, the Escaping Processes, and Nonlinear Stability
,”
Phys. Rev. B
,
59
(
9
), pp.
6100
6105
.10.1103/PhysRevB.59.6100
41.
Adamatzky
,
A.
,
Costello
,
B. D. L.
, and
Asai
,
T.
,
2005
,
Reaction-Diffusion Computers
,
Elsevier
, Amsterdam, The Netherlands.
42.
Purwins
,
H.-G.
,
Bödeker
,
H. U.
, and
Amiranashvili
,
S.
,
2010
, “
Dissipative Solitons
,”
Adv. Phys.
,
59
(
5
), pp.
485
701
.10.1080/00018732.2010.498228
43.
Rainville
,
E. D.
,
1936
, “
Necessary Conditions for Polynomial Solutions of Certain Riccati Equations
,”
Am. Math. Mon.
,
43
(
8
), pp.
473
476
.10.1080/00029890.1936.11987882
44.
Polyanin
,
A.
, and
Zaitsev
,
V.
,
2003
,
Handbook of Exact Solutions for Ordinary Differential Equations
, 2nd ed.,
Chapman & Hall/CRC
,
New York
.
45.
Soare
,
M. V.
,
Teodorescu
,
P. P.
, and
Toma
,
I.
,
2007
,
Ordinary Differential Equations With Applications to Mechanics
, Vol.
585
,
Springer
, Dordrecht, The Netherlands.
46.
El-Tawil
,
M. A.
,
Bahnasawi
,
A. A.
, and
Abdel-Naby
,
A.
,
2004
, “
Solving Riccati Differential Equation Using Adomian's Decomposition Method
,”
Appl. Math. Comput.
,
157
(
2
), pp.
503
514
.10.1016/j.amc.2003.08.049
47.
Evirgen
,
F.
, and
Özdemir
,
N.
,
2011
, “
Multistage Adomian Decomposition Method for Solving NLP Problems Over a Nonlinear Fractional Dynamical System
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021003
.10.1115/1.4002393
48.
Yang
,
C.
,
Hou
,
J.
, and
Qin
,
B.
,
2012
, “
Numerical Solution of Riccati Differential Equations by Using Hybrid Functions and Tau Method
,”
Int. J. Math. Comput. Sci.
,
6
(
8
), pp.
871
874
.10.5281/zenodo.1333847
49.
Mukherjee
,
S.
, and
Roy
,
B.
,
2012
, “
Solution of Riccati Equation With Variable Co-efficient by Differential Transform Method
,”
Int. J. Nonlinear Sci.
,
14
(
2
), pp.
251
256
.https://www.researchgate.net/publication/235962653_Solution_of_Riccati_Equation_with_variable_co-efficients_by_Differential_Transform_Method
50.
Bulut
,
H.
, and
Evans
,
D. J.
,
2002
, “
On the Solution of the Riccati Equation by the Decomposition Method
,”
Int. J. Comput. Math.
,
79
(
1
), pp.
103
109
.10.1080/00207160211917
51.
Abbasbandy
,
S.
,
2006
, “
Homotopy Perturbation Method for Quadratic Riccati Differential Equation and Comparison With Adomian's Decomposition Method
,”
Appl. Math. Comput.
,
172
(
1
), pp.
485
490
.10.1016/j.amc.2005.02.014
52.
Geng
,
F.
,
Lin
,
Y.
, and
Cui
,
M.
,
2009
, “
A Piecewise Variational Iteration Method for Riccati Differential Equations
,”
Comput. Math. Appl.
,
58
(
11–12
), pp.
2518
2522
.10.1016/j.camwa.2009.03.063
53.
Lakestani
,
M.
, and
Dehghan
,
M.
,
2010
, “
Numerical Solution of Riccati Equation Using the Cubic B-Spline Scaling Functions and Chebyshev Cardinal Functions
,”
Comput. Phys. Commun.
,
181
(
5
), pp.
957
966
.10.1016/j.cpc.2010.01.008
54.
Yüzbaş I
,
Ş.
,
2012
, “
A Numerical Approximation Based on the Bessel Functions of First Kind for Solutions of Riccati Type Differential–Difference Equations
,”
Comput. Math. Appl.
,
64
(
6
), pp.
1691
1705
.10.1016/j.camwa.2012.01.026
55.
Khader
,
M.
,
2013
, “
Numerical Treatment for Solving Fractional Riccati Differential Equation
,”
J. Egyptian Math. Soc.
,
21
(
1
), pp.
32
37
.10.1016/j.joems.2012.09.005
56.
Tsai
,
P.-Y.
, and
Chen
,
C.-K.
,
2010
, “
An Approximate Analytic Solution of the Nonlinear Riccati Differential Equation
,”
J. Franklin Inst.
,
347
(
10
), pp.
1850
1862
.10.1016/j.jfranklin.2010.10.005
57.
Adomian
,
G.
,
2013
,
Solving Frontier Problems of Physics: The Decomposition Method
, Vol.
60
,
Springer Science & Business Media, Berlin
.
58.
Jafari
,
H.
,
2016
, “
Numerical Solution of Time-Fractional Klein–Gordon Equation by Using the Decomposition Methods
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041015
.10.1115/1.4032767
59.
Ghomanjani
,
F.
, and
Khorram
,
E.
,
2017
, “
Approximate Solution for Quadratic Riccati Differential Equation
,”
J. Taibah Univ. Sci.
,
11
(
2
), pp.
246
250
.10.1016/j.jtusci.2015.04.001
60.
Parand
,
K.
, and
Delkhosh
,
M.
,
2018
, “
An Accurate Numerical Method for Solving Unsteady Isothermal Flow of a Gas Through a Semi-Infinite Porous Medium
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011007
.10.1115/1.4037225
61.
Odibat
,
Z.
, and
Kumar
,
S.
,
2019
, “
A Robust Computational Algorithm of Homotopy Asymptotic Method for Solving Systems of Fractional Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
8
), p.
081004
.10.1115/1.4043617
62.
Elsgolts
,
L.
,
1977
,
Differential Equations and the Calculus of Variations
,
Mir Publishers
, Moscow, Russia.
63.
Abbasbandy
,
S.
,
2007
, “
A New Application of He's Variational Iteration Method for Quadratic Riccati Differential Equation by Using Adomian's Polynomials
,”
J. Comput. Appl. Math.
,
207
(
1
), pp.
59
63
.10.1016/j.cam.2006.07.012
64.
Abbasbandy
,
S.
,
2006
, “
Iterated He's Homotopy Perturbation Method for Quadratic Riccati Differential Equation
,”
Appl. Math. Comput.
,
175
(
1
), pp.
581
589
.10.1016/j.amc.2005.07.035
65.
Delprato
,
A. M.
,
Samadani
,
A.
,
Kudrolli
,
A.
, and
Tsimring
,
L.
,
2001
, “
Swarming Ring Patterns in Bacterial Colonies Exposed to Ultraviolet Radiation
,”
Phys. Rev. Lett.
,
87
(
15
), p.
158102
.10.1103/PhysRevLett.87.158102
66.
Fuentes
,
M.
,
Kuperman
,
M.
, and
Kenkre
,
V.
,
2003
, “
Nonlocal Interaction Effects on Pattern Formation in Population Dynamics
,”
Phys. Rev. Lett.
,
91
(
15
), p.
158104
.10.1103/PhysRevLett.91.158104
67.
Kenkre
,
V.
,
2004
, “
Results From Variants of the Fisher Equation in the Study of Epidemics and Bacteria
,”
Phys. A: Stat. Mech. Its Appl.
,
342
(
1–2
), pp.
242
248
.10.1016/j.physa.2004.04.084
68.
Fuentes
,
M.
,
Kuperman
,
M.
, and
Kenkre
,
V.
,
2004
, “
Analytical Considerations in the Study of Spatial Patterns Arising From Nonlocal Interaction Effects
,”
J. Phys. Chem. B
,
108
(
29
), pp.
10505
10508
.10.1021/jp040090k
69.
Mikhailov
,
A. S.
, and
Showalter
,
K.
,
2006
, “
Control of Waves, Patterns and Turbulence in Chemical Systems
,”
Phys. Rep.
,
425
(
2–3
), pp.
79
194
.10.1016/j.physrep.2005.11.003
70.
Clerc
,
M.
,
Tirapegui
,
E.
, and
Trejo
,
M.
,
2006
, “
Pattern Formation and Localized Structures in Reaction-Diffusion Systems With Non-Fickian Transport
,”
Phys. Rev. Lett.
,
97
(
17
), p.
176102
.10.1103/PhysRevLett.97.176102
71.
Bolster
,
D.
,
Benson
,
D. A.
,
Le Borgne
,
T.
, and
Dentz
,
M.
,
2010
, “
Anomalous Mixing and Reaction Induced by Superdiffusive Nonlocal Transport
,”
Phys. Rev. E
,
82
(
2
), p.
021119
.10.1103/PhysRevE.82.021119
72.
Murray, J. D., 2007, Mathematical Biology 1: An Introduction, Interdisciplinary Applied Mathematics, 3rd ed., Springer, New York.
73.
Perry
,
N.
,
2005
, “
Experimental Validation of a Critical Domain Size in Reaction–Diffusion Systems With Escherichia coli Populations
,”
J. R. Soc. Interface
,
2
(
4
), pp.
379
387
.10.1098/rsif.2005.0054
74.
Liu
,
Q.-X.
,
Rietkerk
,
M.
,
Herman
,
P. M.
,
Piersma
,
T.
,
Fryxell
,
J. M.
, and
van de Koppel
,
J.
,
2016
, “
Phase Separation Driven by Density-Dependent Movement: A Novel Mechanism for Ecological Patterns
,”
Phys. Life Rev.
,
19
, pp.
107
121
.10.1016/j.plrev.2016.07.009
75.
Levchenko
,
E. A.
,
Shapovalov
,
A. V.
, and
Trifonov
,
A. Y.
,
2014
, “
Pattern Formation in Terms of Semiclassically Limited Distribution on Lower Dimensional Manifolds for the Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation
,”
J. Phys. A: Math. Theor.
,
47
(
2
), p.
025209
.10.1088/1751-8113/47/2/025209
76.
Blanchard
,
A. E.
,
Celik
,
V.
, and
Lu
,
T.
,
2014
, “
Extinction, Coexistence, and Localized Patterns of a Bacterial Population With Contact-Dependent Inhibition
,”
BMC Syst. Biol.
,
8
(
1
), p.
23
.10.1186/1752-0509-8-23
77.
Colombo
,
E. H.
, and
Anteneodo
,
C.
,
2012
, “
Nonlinear Diffusion Effects on Biological Population Spatial Patterns
,”
Phys. Rev. E
,
86
(
3
), p.
036215
.10.1103/PhysRevE.86.036215
78.
da Silva
,
D. P.
, and
Kraenkel
,
R. A.
,
2012
, “
Population Persistence in Weakly-Coupled Sinks
,”
Phys. A: Stat. Mech. Its Appl.
,
391
(
1–2
), pp.
142
146
.10.1016/j.physa.2011.08.029
79.
Shapovalov, A. V., 2018, “Approximate Solutions of the One-Dimensional Fisher-Kolmogorov-Petrovskii-Piskunov Equation With Quasilocal Competitive Losses,”
Russ. Phys. J.
, 60(9), pp. 1461–1468.10.1007/s11182-018-1236-6
80.
da Silva
,
L.
,
Colombo
,
E.
, and
Anteneodo
,
C.
,
2014
, “
Effect of Environment Fluctuations on Pattern Formation of Single Species
,”
Phys. Rev. E
,
90
(
1
), p.
012813
.10.1103/PhysRevE.90.012813
81.
Shapovalov
,
A. V.
, and
Trifonov
,
A. Y.
,
2018
, “
An Application of the Maslov Complex Germ Method to the One-Dimensional Nonlocal Fisher–KPP Equation
,”
Int. J. Geometric Methods Mod. Phys.
,
15
(
06
), p.
1850102
.10.1142/S0219887818501025
82.
Yin
,
H.
, and
Wen
,
X.
,
2018
, “
Pattern Formation Through Temporal Fractional Derivatives
,”
Sci. Rep.
,
8
(
1
), p.
5070
.10.1038/s41598-018-23470-8
83.
Zhao
,
X.-Q.
, and
Wang
,
W.
,
2004
, “
Fisher Waves in an Epidemic Model
,”
Discrete Contin. Dyn. Syst. Ser. B
,
4
(
4
), pp.
1117
1128
.10.3934/dcdsb.2004.4.1117
84.
Ben Avraham
,
D.
,
1998
, “
Fisher Waves in the Diffusion-Limited Coalescence Process a + a A
,”
Phys. Lett. A
,
247
(
1–2
), pp.
53
58
.10.1016/S0375-9601(98)00569-6
85.
Wang
,
X.-S.
,
Wang
,
H.
, and
Wu
,
J.
,
2012
, “
Traveling Waves of Diffusive Predator-Prey Systems: Disease Outbreak Propagation
,”
Discrete Contin. Dyn. Syst.-A
,
32
(
9
), pp.
3303
3324
.10.3934/dcds.2012.32.3303
86.
Lin
,
A. L.
,
Mann
,
B. A.
,
Torres-Oviedo
,
G.
,
Lincoln
,
B.
,
Käs
,
J.
, and
Swinney
,
H. L.
,
2004
, “
Localization and Extinction of Bacterial Populations Under Inhomogeneous Growth Conditions
,”
Biophys. J.
,
87
(
1
), pp.
75
80
.10.1529/biophysj.103.034041
87.
Nelson
,
D. R.
, and
Shnerb
,
N. M.
,
1998
, “
Non-Hermitian Localization and Population Biology
,”
Phys. Rev. E
,
58
(
2
), pp.
1383
1403
.10.1103/PhysRevE.58.1383
88.
Koch
,
A.
, and
Meinhardt
,
H.
,
1994
, “
Biological Pattern Formation: From Basic Mechanisms to Complex Structures
,”
Rev. Mod. Phys.
,
66
(
4
), pp.
1481
1507
.10.1103/RevModPhys.66.1481
89.
Cross
,
M. C.
, and
Hohenberg
,
P. C.
,
1993
, “
Pattern Formation Outside of Equilibrium
,”
Rev. Mod. Phys.
,
65
(
3
), pp.
851
1112
.10.1103/RevModPhys.65.851
90.
Dahmen
,
K. A.
,
Nelson
,
D. R.
, and
Shnerb
,
N. M.
,
2000
, “
Life and Death Near a windy oasis
,”
J. Math. Biol.
,
41
(
1
), pp.
1
23
.10.1007/s002850000025
91.
Ben-Jacob
,
E.
,
Schochet
,
O.
,
Tenenbaum
,
A.
,
Cohen
,
I.
,
Czirók
,
A.
, and
Vicsek
,
T.
,
1994
, “
Generic Modelling of Cooperative Growth Patterns in Bacterial Colonies
,”
Nature
,
368
(
6466
), pp.
46
49
.10.1038/368046a0
92.
Fisher
,
R. A.
,
1937
, “
The Wave of Advance of Advantageous Genes
,”
Ann. Eugenics
,
7
(
4
), pp.
355
369
.10.1111/j.1469-1809.1937.tb02153.x
93.
da Cunha
,
J. A. R.
,
Penna
,
A. L. A.
, and
Oliveira
,
F. A.
,
2011
, “
Pattern Formation and Coexistence Domains for a Nonlocal Population Dynamics
,”
Phys. Rev. E
,
83
(
1
), p.
015201
.10.1103/PhysRevE.83.015201
94.
Barbosa
,
F. V.
,
Penna
,
A. A.
,
Ferreira
,
R. M.
,
Novais
,
K. L.
,
da Cunha
,
J. A.
, and
Oliveira
,
F. A.
,
2017
, “
Pattern Transitions and Complexity for a Nonlocal Logistic Map
,”
Phys. A: Stat. Mech. Appl.
,
473
, pp.
301
312
.10.1016/j.physa.2016.12.082
95.
Kolmogorov
,
A.
,
Petrovskii
,
I.
, and
Piskunov
,
N.
,
1991
, “A Study of the Diffusion Equation With Increase in the Amount of Substance, and Its Application to a Biological Problem,” V. M. Tikhomirov, ed., Selected Works of A. N. Kolmogorov, Vol.
1
, Mathematics and Mechanics, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 242–270.
96.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
,
1992
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
97.
Lapidus
,
L.
, and
Seinfeld
,
J. H.
,
1971
,
Numerical Solution of Ordinary Differential Equations
,
Academic Press
,
New York
.
98.
Wanner
,
G.
, and
Hairer
,
E.
,
1996
,
Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems
,
Springer
,
Berlin
.
99.
Zhang
,
S.
, and
Li
,
J.
,
2011
, “
Explicit Numerical Methods for Solving Stiff Dynamical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
041008
.10.1115/1.4003706
You do not currently have access to this content.