The Chaplygin sleigh is a canonical problem of mechanical systems with nonholonomic constraints. Such constraints often arise due to the role of a no-slip requirement imposed by friction. In the case of the Chaplygin sleigh, it is well known that its asymptotic motion is that of pure translation along a straight line. Any perturbations in angular velocity decay and result in an increase in asymptotic speed of the sleigh. Such motion of the sleigh is under the assumption that the magnitude of friction is as high as necessary to prevent slipping. We relax this assumption by setting a maximum value to the friction. The Chaplygin sleigh is then under a piecewise-smooth nonholonomic constraint and transitions between “slip” and “stick” modes. We investigate these transitions and the resulting nonsmooth dynamics of the system. We show that the reduced state space of the system can be partitioned into sets of distinct dynamics and that the stick–slip transitions can be explained in terms of transitions of the state of the system between these sets.

References

1.
Chaplygin
,
S. A.
,
2008
, “
On the Theory of the Motion of Nonholonomic Systems: The Reducing Multiplier Theorem
,”
Regular Chaotic Dyn.
,
13
(
4
), pp.
369
376
.
2.
Neimark
,
J. I.
, and
Fufaev
,
N. A.
,
1972
,
Dynamics of Nonholonomic Systems
,
AMS
,
Providence, RI
.
3.
Bloch
,
A. M.
,
2003
,
Nonholonomic Mechanics and Control
,
Springer Verlag
,
New York
.
4.
O'Reilly
,
O. M.
,
1996
, “
The Dynamics of Rolling Disks and Sliding Disks
,”
Nonlinear Dyn.
,
10
(
3
), pp.
287
305
.
5.
Osborne
,
J. M.
, and
Zenkov
,
D. V.
,
2005
, “
Steering the Chaplygin Sleigh by a Moving Mass
,” 44th
IEEE
Conference on Decision and Control, Dec. 15.
6.
Marsden
,
J. E.
,
Bloch
,
A. M.
, and
Zenkov
,
D. V.
,
2009
, “
Quasivelocities and Stabilization of Relative Equilibria of Underactuated Nonholonomic Systems
,”
Conference on Control and Decision
, Shanghai, China, pp.
3335
3340
.
7.
Dear
,
T.
,
Kelly
,
S. D.
,
Travers
,
M.
, and
Choset
,
H. E.
,
2013
, “
Mechanics and Control of a Terrestrial Vehicle Exploiting a Nonholonomic Constraint for Fishlike Locomotion
,”
ASME
Paper No. DSCC2013-3941.
8.
Kelly
,
S. D.
,
Fairchild
,
M. J.
,
Hassing
,
P. M.
, and
Tallapragada
,
P.
,
2012
, “
Proportional Heading Control for Planar Navigation: The Chaplygin Beanie and Fishlike Robotic Swimming
,”
Energy
50
(
1
), p.
2
.
9.
Polllard
,
B.
, and
Tallapragada
,
P.
,
2016
, “
An Aquatic Robot Propelled by an Internal Rotor
,”
IEEE/ASME Trans. Mechatronics
,
PP
(
99
), pp.
657
662
.
10.
Tallapragada
,
P.
,
2015
, “
A Swimming Robot With an Internal Rotor as a Nonholonomic System
,”
American Control Conference
, pp.
657
662
.
11.
Tallapragada
,
P.
, and
Kelly
,
S. D.
,
2016
, “
Integrability of Velocity Constraints Modeling Vortex Shedding in Ideal Fluids
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
2
), p.
021008
.
12.
Hamerlain
,
F.
,
Achour
,
K.
,
Floquet
,
T.
, and
Perruquetti
,
W.
,
2005
, “
Higher Order Sliding Mode Control of Wheeled Mobile Robots in the Presence of Sliding Effects
,” 44th
IEEE
Conference on Decision and Control and the European Control Conference
, Dec. 15, pp.
1959
1963
.
13.
Wright
,
C.
,
Johnson
,
A.
,
Peck
,
A.
,
McCord
,
Z.
,
Naaktgeboren
,
A.
,
Gianfortoni
,
P.
,
Gonzalez-Rivero
,
M.
,
Hatton
,
R.
, and
Chose
,
H.
,
2007
, “
Design of a Modular Snake Robot
,” 2007
IEEE/RSJ
International Conference on Intelligent Robots and Systems, Oct. 29–Nov. 2, pp.
2609
2614
.
14.
Sidek
,
N.
, and
Sarkar
,
N.
,
2008
, “
Dynamic Modeling and Control of Nonholonomic Mobile Robot With Lateral Slip
,”
Third International Conference on Systems
, Apr. 13–18, pp.
35
40
.
15.
Bazzi
,
S.
,
Shammas
,
E.
, and
Asmar
,
D.
,
2014
, “
A Novel Method for Modeling Skidding for Systems With Nonholonomic Constraints
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1517
1528
.
16.
Goodwine
,
B.
, and
Burdick
,
J.
,
1997
, “
Trajectory Generation for Kinematic Legged Robots
,”
IEEE
International Conference on Robotics and Automation
, Apr. 25, pp.
2689
2696
.
17.
Li
,
Z.
, and
Canny
,
J.
,
1990
, “
Motion of Two Rigid Bodies With Rolling Constraints
,”
IEEE Trans. Rob. Autom.
,
6
(
1
), pp.
62
72
.
18.
Fedonyuk
,
V.
, and
Tallapragada
,
P.
,
2015
, “
The Stick-Slip Motion of a Chaplygin Sleigh With a Piecewise Smooth Nonholonomic Constraint
,”
ASME
Paper No. DSCC2015-9820.
19.
Corradini
,
M. L.
,
1999
, “
Robust Stabilization of a Mobile Robot Violating the Nonholonomic Constraint Via Quasi-Sliding Modes
,”
American Control Conference
, June 2–4, pp.
3935
3939
.
20.
Motte
,
I.
, and
Campion
,
G.
,
2000
, “
A Slow Manifold Approach for the Control of Mobile Robots Not Satisfying the Kinematic Constraints
,”
IEEE Trans. Rob. Autom.
,
16
(
6
), pp.
875
880
.
21.
Low
,
C. B.
, and
Wang
,
D.
,
2008
, “
GPS-Based Tracking Control for a Car-Like Wheeled Mobile Robot With Skidding and Slipping
,”
IEEE/ASME Trans. Mechatronics
,
13
(
4
), pp.
480
484
.
22.
Wang
,
D.
, and
Low
,
C. B.
,
2008
, “
Modeling and Analysis of Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective
,”
IEEE/ASME Trans. Mechatronics
,
24
(
3
), pp.
676
687
.
23.
Saito
,
M.
,
Fukaya
,
M.
, and
Iwasaki
,
T.
,
2002
, “
Serpentine Locomotion With Robotic Snakes
,”
IEEE Control Syst. Mag.
,
22
(
1
), pp.
64
81
.
24.
Ma
,
S.
,
Ohmameuda
,
Y.
, and
Inoue
,
K.
,
2004
, “
Dynamic Analysis of 3-Dimensional Snake Robots
,”
Intelligent Robots and Systems Conference
(
IROS
), Sept. 28–Oct. 2, pp.
767
762
.
25.
Transeth
,
A. A.
,
Van De Wouw
,
N.
,
Pavlov
,
A.
,
Hespanha
,
J. P.
, and
Pettersen
,
K. Y.
,
2007
, “
Tracking Control for Snake Robot Joints
,” 2007
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Oct. 29–Nov. 2, pp.
3539
3546
.
26.
Transeth
,
A. A.
,
Leine
,
R. I.
,
Glocker
,
C.
,
Pettersen
,
K. Y.
, and
Liljebck
,
P.
,
2008
, “
Snake Robot Obstacle-Aided Locomotion: Modeling, Simulations, and Experiments
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
88
104
.
27.
Transeth
,
A. A.
,
Leine
,
R. I.
,
Glocker
,
C.
, and
Pettersen
,
K. Y.
,
2008
, “
3-D Snake Robot Motion: Nonsmooth Modeling, Simulations, and Experiments
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
361
376
.
28.
Transeth
,
A. A.
,
Pettersen
,
K. Y.
, and
Liljebck
,
P.
,
2009
, “
A Survey on Snake Robot Modeling and Locomotion
,”
Robotica
,
27
(
7
), pp.
999
1015
.
29.
Liljebck
,
P.
,
Pettersen
,
K. Y.
,
Stavdahl
,
O.
, and
Gravdahl
,
J. T.
,
2013
,
Snake Robots—Modelling, Mechatronics, and Control
,
Springer-Verlag
,
London
.
30.
Ruina
,
A.
,
1998
, “
Nonholonomic Stability Aspects of Piecewise Nonholonomic Systems
,”
Rep. Math. Phys.
,
42
(
1–2
), pp.
91
100
.
You do not currently have access to this content.